Читайте также: ЭПИГЕНЕТИЧЕСКАЯ ТЕОРИЯ СТАРЕНИЯ
Эпигенетика (греч. επί — над, выше, внешний) — в биологии, в частности в генетике — представляет собой изучение закономерностей эпигенетического наследования — изменения экспрессии генов или фенотипа клетки, вызванных механизмами, не затрагивающими последовательности ДНК. Эпигенетические изменения сохраняются в ряде митотических делений соматических клеток, а также могут передаваться следующим поколениям. Примерами эпигенетических изменений являются метилирование ДНК и деацетилирование гистонов.
В рамках эпигенетики исследуются такие процессы как: парамутация, генетический букмаркинг, геномный импринтинг, инактивация X-хромосомы, эффект положения, материнские эффекты, репрограммирование, а также другие механизмы регуляции экспрессии генов. В 2011 году было показано, что метилирование мРНК также играет роль в предрасположенности к диабету, что дало начало новой отрасли — РНК-эпигенетике[1].
В эпигенетических исследованиях используется широкий спектр методов молекулярной биологии, в том числе — иммунопреципитация хроматина (различные модификации ChIP-on-chip и ChIP-Seq), гибридизация in situ, чувствительные к метилированию рестриктазы, идентификации ДНК-аденин-метилтрансферазы (DamID), бисульфитное секвенирование. Кроме того, всё большую роль играет использование методов биоинформатики (компьютерная эпигенетика).
Примеры
Одним из примеров эпигенетических изменений у эукариот является процесс клеточной дифференцировки. Во время морфогенеза плюрипотентные стволовые клетки формируют различные полипотентные клеточные линии эмбриона, которые в свою очередь дают начало полностью дифференцированным клеткам. Другими словами, одна оплодотворённая яйцеклетка — зигота — дифференцируется в различные типы клеток, включая: нейроны, мышечные клетки, эпителий, эндотелий сосудов и др., путем множественных делений. Это достигается активацией одних генов, и, в то же время, ингибированием других с помощью эпигенетических механизмов[2].
Второй пример может быть продемонстрирован на мышах-полевках. Осенью, перед похолоданием, они рождаются с более длинной и густой шерстью, чем весной, хотя внутриутробное развитие «весенних» и «осенних» мышей происходит на фоне практически одинаковых условий (температуры, длины светового дня, влажности и т. д.). Исследования показали, что сигналом, запускающим эпигенетические изменения, приводящие к увеличению длины шерсти, является изменение градиента концентрации мелатонина в крови (весной он снижается, а осенью — повышается). Таким образом, эпигенетические адаптивные изменения (увеличение длины шерсти) индуцируются ещё до наступления холодов, адаптация к которым выгодна для организма.
Этимология и определения
Термин «эпигенетика» (как и «эпигенетический ландшафт») был предложен Конрадом Уоддингтоном (Conrad Hal Waddington) в 1942 году, как производное от слов «генетика» и аристотелевского слова «эпигенез». Когда Уоддингтон ввёл этот термин, физическая природа генов не была до конца известна, поэтому он использовал его в качестве концептуальной модели того, как гены могут взаимодействовать со своим окружением при формировании фенотипа.
Робин Холлидэй (Robin Holliday) определил эпигенетику как «изучение механизмов временного и пространственного контроля активности генов в процессе развития организмов»[3]. Таким образом, термин «эпигенетика» может быть использован, чтобы описать любые внутренние факторы, которые влияют на развитие организма, за исключением самой последовательности ДНК.
Современное использование этого слова в научном дискурсе является более узким. Греческий префикс epi- в слове, подразумевает факторы, которые влияют «поверх» или «в дополнение к» генетическим, а значит эпигенетические факторы воздействуют вдобавок или помимо традиционных генетических факторов наследственности.
Наиболее часто использующееся в настоящее время определение эпигенетики было введено А.Риггсом (Arthur D. Riggs) в 90-х годах XX века и формулируется как «изучение митотически и/или мейотически наследуемых изменений в функции генов, которые не могут быть объяснены изменениями в последовательности ДНК»[4].
Сходство со словом «генетика» породило много аналогий в использовании термина. «Эпигеном» является аналогом термина «геном», и определяет общее эпигенетическое состояние клетки. Метафора «генетический код» была также адаптирована, а термин «эпигенетический код» используется, чтобы описать набор эпигенетических особенностей, которые создают разнообразные фенотипы в различных клетках. Широко используется термин «эпимутация», которым обозначают вызванное спорадическими факторами изменение нормального эпигенома, передающееся в ряде клеточных поколений.
Психолог Эрик Эриксон использовал термин эпигенетика в своей теории психосоциального развития, однако, его определение не имеет прямой связи с биологической терминологией[5].
Молекулярные основы эпигенетики
Молекулярная основа эпигенетики достаточно сложна при том, что она не затрагивает первичную структуру ДНК, а изменяет активность определенных генов.[6] Это объясняет, почему в дифференцированных клетках многоклеточного организма экспрессируются только гены, необходимые для их специфической деятельности. Особенностью эпигенетических изменений является то, что они сохраняются при клеточном делении. Известно, что большинство эпигенетических изменений проявляется только в пределах жизни одного организма. В то же время, если изменение в ДНК произошло в сперматозоиде или яйцеклетке, то некоторые эпигенетические проявления могут передаваться от одного поколения к другому[7].
Метилирование ДНК
Наиболее хорошо изученным к настоящему времени эпигенетическим механизмом является метилирование цитозиновых оснований ДНК. Начало интенсивным исследованиям роли метилирования в регуляции генетической экспрессии, в том числе при старении, было положено ещё в 70-е годы XX века пионерскими работами Бориса Фёдоровича Ванюшина и Геннадия Дмитриевича Бердышева с соавторами. Процесс метилирования ДНК заключается в присоединении метильной группы к цитозину в составе CpG-динуклеотида в позиции С5 цитозинового кольца. Метилирование ДНК, в основном, присуще эукариотам. У человека метилировано около 1 % геномной ДНК. За процесс метилирования ДНК отвечают три фермента, называемые ДНК-метилтрансферазами 1, 3a и 3b (DNMT1, DNMT3a и DNMT3b). Предполагается, что DNMT3a и DNMT3b — это de novo метилтрансферазы, которые осуществляют формирование профиля метилирования ДНК на ранних стадиях развития, а DNMT1 осуществляет метилирование ДНК на более поздних этапах жизни организма. Фермент DNMT1 имеет высокое сродство с 5-метилцитозином. Когда DNMT1 находит «полуметилированный сайт» (сайт, в котором метилирован цитозин только в одной цепи ДНК), он метилирует цитозин на второй нити в том же сайте. Функция метилирования заключается в активации/инактивации гена. В большинстве случаев, метилирование промоторных областей гена приводит к подавлению активности гена. Показано, что даже незначительные изменения в степени метилирования ДНК могут существенно изменять уровень генетической экспрессии.
Модификации гистонов
Хотя модификации аминокислот в гистонах происходят на всей молекуле белка, модификации N-хвостов происходит значительно чаще. Эти модификации включают: фосфорилирование, убиквитилирование, ацетилирование, метилирование, сумоилирование. Ацетилирование является наиболее изученной модификацией гистонов. Так, ацетилирование ацетилтрансферазой 14-го и 9-го лизинов гистона H3 (H3K14ac и H3K9ac, соответственно) коррелирует с транскрипционной активностью в данном районе хромосомы. Это происходит из-за того, что ацетилирование лизина меняет его положительный заряд на нейтральный, что делает невозможным его связь с негативно заряженными фосфатными группами в ДНК. В результате, происходит отсоединение гистонов от ДНК, что приводит к посадке на «голую» ДНК комплекса SWI/SNF и других транскрипционных факторов которые запускают транскрипцию. Это «цис»-модель эпигенетического регулирования.
Гистоны способны поддерживать свое модифицированное состояние и выступать матрицей для модификации новых гистонов, которые связываются с ДНК после репликации.
Ремоделирование хроматина
Эпигенетические факторы влияют на активность экспрессии определенных генов на нескольких уровнях, что приводит к изменению фенотипа клетки или организма. Одним из механизмов такого влияния является ремоделирование хроматина. Хроматин — это комплекс ДНК с белками, прежде всего, с белками-гистонами. Гистоны формируют нуклеосому, вокруг которой накручивается ДНК, в результате чего обеспечивается её компактизация в ядре. От густоты расположения нуклеосом в активно экспрессирующихся участках генома зависит интенсивность экспрессии генов. Хроматин, свободный от нуклеосом, называется открытым хроматином. Ремоделирование хроматина — это процесс активного изменения «густоты» нуклеосом и сродства гистонов с ДНК.
Прионы
Прионные белки обладают аномальной трёхмерной структурой и способны катализировать структурное превращение гомологичных им нормальных белков в себе подобный (прионный) белок, присоединяясь к белку-мишени и изменяя его конформацию. Как правило, прионное состояние белка характеризуется переходом α-спиралей белка в β-слои. Прионы — единственные инфекционные агенты, размножение которых происходит без участия нуклеиновых кислот, а также они осуществляют единственный известный путь передачи информации от белка к белку.
Системы структурной наследственности
У генетически идентичных клеток инфузорий, таких как Tetrahymena и Paramecium, показано наследование различий в характере организации рядов ресничек на поверхности клетки. Экспериментально измененный узор может быть передан дочерним клеткам. Вероятно, существующие структуры выступают в качестве шаблонов для новых структур. Механизмы такого наследования не ясны, но существуют причины полагать, что у многоклеточных организмов также есть системы структурной наследственности[8][9].
МикроРНК
В последнее время большое внимание привлечено к изучению роли в процессах регуляции генетической активности малых некодирующих РНК (miRNA)[10][11]. МикроРНК могут изменять стабильность и трансляцию мРНК путём комплементарного связывания с 3'-нетранслируемым участком мРНК.
Значение
Эпигенетическое наследование в соматических клетках играет важнейшую роль в развитии многоклеточного организма. Геном всех клеток почти одинаков, в то же время многоклеточный организм содержит различно дифференцированные клетки, которые по-разному воспринимают сигналы окружающей среды и выполняют различные функции. Именно эпигенетические факторы обеспечивают «клеточную память».[6]
Медицина
Как генетические, так и эпигенетические явления оказывают значительное влияние на здоровье человека. Известно несколько заболеваний, которые возникают из-за нарушения метилирования генов, а также из-за гемизиготности по гену, подверженному геномному импринтингу. В настоящее время разрабатывается эпигенетическая терапия, направленная на лечение этих заболеваний посредством воздействия на эпигеном и коррекции нарушений. Для многих организмов доказана связь активности ацетилирования/деацетилирования гистонов с продолжительностью жизни. Возможно, эти же процессы влияют и на продолжительность жизни людей.
Эволюция
Хотя эпигенетику в основном рассматривают в контексте соматической клеточной памяти, существует также ряд трансгенеративных эпигенетических эффектов, при которых генетические изменения передаются потомкам. В отличие от мутаций эпигенетические изменения обратимы и, возможно, могут быть направлены (адаптивны)[6]. Поскольку большинство из них исчезает через несколько поколений, они могут носить характер лишь временных адаптаций. Также активно обсуждается вопрос о возможности влияния эпигенетики на частоту мутаций в определенном гене[12]. Было показано, что семейство белков цитозин-дезаминаз APOBEC/AID принимает участие как в генетической, так и в эпигенетической наследственности, используя схожие молекулярные механизмы. У многих организмов было обнаружено более 100 случаев трансгенеративных эпигенетических явлений[13].
Эпигенетические эффекты у человека
Геномный импринтинг и связанные с ним заболевания
Некоторые заболевания человека связаны с геномным импринтингом, феноменом, при котором аллели гена имеют разный профиль метилирования в зависимости от того, от родителя какого пола они получены. Самыми известными случаями заболеваний, связанных с импринтингом, являются синдром Ангельмана и синдром Прадера — Вилли. Причиной развития обоих является частичная делеция в регионе 15q[14]. Это связано с наличием геномного импринтинга в данном локусе.
Трансгенеративные эпигенетические эффекты
Маркус Пембри (Marcus Pembrey) с соавторами установили, что внуки (но не внучки) мужчин, которые были подвержены голоду в Швеции в 19 веке, менее склонны к сердечно-сосудистым заболеваниям, но сильнее подвержены диабету, что, как считает автор, является примером эпигенетической наследственности[15].
Рак и нарушения развития
Многие вещества имеют свойства эпигенетических канцерогенов: они приводят к увеличению частоты возникновения опухолей, не проявляя при этом мутагенного эффекта (например, диэтилстилбестрола арсенит, гексахлорбензол, соединения никеля). Многие тератогены, в частности диэтилстилбестрол, оказывают специфическое воздействие на плод на эпигенетическом уровне[16][17].
Изменения в ацетилировании гистонов и метилировании ДНК приводят к развитию рака простаты путем изменения активности различных генов. На активность генов при раке простаты может влиять питание и образ жизни[18].
В 2008 году Национальный Институт Здоровья США объявил, что 190 миллионов долларов будет потрачено на изучение эпигенетики в течение следующих 5 лет. По мнению некоторых исследователей, которые стали инициаторами выделения средств, эпигенетика может играть бо́льшую роль в лечении заболеваний человека, чем генетика.
Эпигеном и старение
Смотри также: Изменения метилирования ДНК при старении
В последние годы накоплено большое количество доказательств того, что эпигенетические процессы играют важную роль на поздних этапах жизни. В частности, при старении происходят широкомасштабные изменения профилей метилирования. Предполагается, что эти процессы находятся под генетическим контролем. Обычно наибольшее количество метилированых цитозиновых оснований наблюдается в ДНК, выделенной из эмбрионов или новорождённых животных, и это количество постепенно уменьшается с возрастом. Подобное снижение уровня метилирования ДНК обнаружено в культивируемых лимфоцитах мышей, хомяков и людей. Оно имеет систематический характер, но может быть ткане- и геноспецифичным. Например, Tra с соавт. (Tra et al., 2002) при сопоставлении более чем 2000 локусов в Т-лимфоцитах, изолированных из периферической крови новорожденных, а также людей среднего и старшего возраста, выявили, что 23 из этих локусов с возрастом подвергаются гиперметилированию и 6 — гипометилированию, причём сходные изменения характера метилирования выявлены и в других тканях: поджелудочной железе, легких и пищеводе. Выраженные эпигенетические искажения выявлены у больных прогерией Гетчинсона-Гилфорда.
Предполагается, что деметилирование с возрастом приводит к хромосомным перестройкам за счет активации мобильных генетических элементов (МГЭ), которые обычно подавляются при помощи метилирования ДНК (Barbot et al., 2002; Bennett-Baker, 2003). Систематическое возрастное снижение уровня метилирования может, по крайней мере отчасти, быть причиной возникновения многих комплексных заболеваний, которые нельзя объяснить с помощью классических генетических воззрений.
Ещё одним процессом, происходящим в онтогенезе параллельно с деметилированием и влияющим на процессы эпигенетического регулирования, является конденсация хроматина (гетерохроматинизация), приводящая с возрастом к снижению генетической активности. В ряде работ возраст-зависимые эпигенетические изменения были продемонстрированы также в половых клетках; направление этих изменений, по всей видимости, является геноспецифичным.
Источник: ru.wikipedia.org
Ознакомьтесь более подробно с эпигенетическими механизмами и их влиянием на долголетие:
Метилирование ДНК и некоторые другие эпигенетические механизмы, регулирующие старение
Перспективные методы омоложения организма через эпигенетику