Киборги среди нас

Благодаря научно-фантастическим фильмам и книгам человечество, кажется, свыклось с идеей, что в будущем среди нас будут жить киборги. Однако трудно поверить, что будущее уже здесь, и настоящие киборги много десятилетий уже живут рядом с нами. Это обычные люди — но с кардиостимуляторами, протезами конечностей, биосенсорами или слуховыми имплантами. Так что же такое «кибернетические ткани», кто соревнуется в Кибатлоне и какие возникают в этой связи этические вопросы?киборги среди нас

Соединение биологического организма и техники — увлекательная и вовсе не такая опасная область, развивающаяся на стыке нескольких наук. Кадр из фильма «Я, робот».

 

Технически модифицированные и улучшенные существа без эмоций и чувств — такие ассоциации со словом «киборг» обычно всплывают в голове благодаря современной масс-культуре. На самом деле «кибернетический организм» — а именно так звучит несокращенный вариант термина — обозначает лишь объединение биологического организма и какого-то механизма. Киборги, живущие среди нас, вовсе не всегда выглядят как залатанные в железо роботы: это люди с кардиостимуляторами, инсулиновыми помпами, биосенсорами в опухолях. Многих из них даже не обнаружить «на глаз» — разве что по сигналу рамки-металлоискателя в общественном месте.

Сейчас имплантация медицинских приборов — один из самых прибыльных видов бизнеса в США. Такие приборы используют и для восстановления функций организма, и для улучшения жизни, и для проведения инвазивных анализов.

Имплантированная техника: от традиционных приборов до новейших разработок

Трудно поверить, но тандем ученых и врачей успешно создает киборгов уже несколько десятилетий. Всё началось с сердечно-сосудистой системы. Более 50 лет назад был создан первый полностью находящийся под кожей электрокардиостимулятор — устройство, которое поддерживает и/или регулирует частоту сердечных сокращений у больного. В наши дни ежегодно вживляется более 500 000 таких приборов. Появились и новые технологии: например, существует имплантируемый кардиовертер-дефибриллятор для лечения угрожающей жизни тахикардии и фибрилляции.

Но больше всего поражает то, что уже через пару лет планируется провести тестирование искусственного сердца BiVACOR на людях (рис. 1) — опыты на овцах уже завершились успехом. Оно не перекачивает кровь, как насос, а просто «двигает» — поэтому и пульса у будущих пациентов с таким кардиопротезом не будет. Прибор может полностью заменить собственное сердце пациента и прослужить до 10 лет, по словам разработчиков [1]. Кроме того, он маленький (чтобы подойти и ребенку, и женщине), но мощный (чтобы успешно работать в теле взрослого мужчины). В современном мире, где донорских органов постоянно катастрофически не хватает, этот девайс был бы просто незаменимым. Питание прибора внешнее — с помощью чрескожной трансмиссии. Конструкция с использованием магнитной левитации и вращающихся дисков предотвращает износ деталей — одну из проблем других разработок, имитирующих структуру настоящего сердца. «Умные» сенсоры помогают подстраивать скорость кровотока BiVACORа под физическую и эмоциональную активность пользователя.

искусственное сердце

Рисунок 1. Ожидается, что тестирование работы искусственного сердца на людях начнется в 2018 году. Рисунок с сайта obninskchess-ru.livejournal.com.

 

Помимо сердца, традиционно девайсы интегрируют в организм для доставки лекарств при хронических заболеваниях — как это делает, например, инсулиновая помпа при сахарном диабете (рис. 2). Сейчас такие же приборы используют для доставки препаратов в ходе химиотерапии или лечения хронической боли.

инсулиновая помпа

Рисунок 2. Имплантируемая инсулиновая помпа для людей с сахарным диабетом — классический пример кибернизации человека. Рисунок из [5].

 

Всё популярнее становятся имплантируемые нейростимуляторы — дейвасы, стимулирующие определенные нервы в организме человека. Разрабатывают их для применения при эпилепсии, болезни Паркинсона, хронических болях (см. видео), недержании мочи, ожирении, артрите, гипертонии [2] и многих других нарушениях.

На совершенно новый уровень вышли имплантируемые приборы для улучшения зрения и слуха [3, 4].

Видео: Как стимуляция спинного мозга изменяет болевые сигналы до их попадания в мозг
 

Измерить всё: биосенсоры

Все упомянутые разработки призваны восстановить утраченную или отсутствующую функцию организма. Но появилось и другое направление развития технологий — миниатюрные имплантируемые биосенсоры, регистрирующие изменения физиологических параметров организма [5]. Вживление такого прибора тоже делает из пациента киборга — хотя и в немного непривычном смысле слова, ведь у организма не появляется никаких сверхспособностей.

Биосенсор — это устройство, состоящее из чувствительного элемента — биорецептора, распознающего нужное вещество, — преобразователя сигнала, который переводит эту информацию в сигнал для передачи, и процессора сигнала. Таких биосенсоров очень много: иммунобиосенсоры, энзиматические биосенсоры, генобиосенсоры... С помощью новых технологий сверхчувствительные биорецепторы способны «засечь» глюкозу, холестерин, E. coli, вирусы гриппа и папилломы человека, компоненты клеток, определенные последовательности ДНК, ацетилхолин, дофамин, кортизол, глутаминовую, аскорбиновую и мочевую кислоты, иммуноглобулины (IgG и IgE) и многие другие молекулы [6].

Одним из самых перспективных направлений считают применение биосенсоров в онкологии [7]. Отслеживая изменения специфических параметров непосредственно в опухоли, можно вынести вердикт об эффективности лечения и атаковать рак именно в тот момент, когда он наиболее чувствителен к тому или иному воздействию. Такая целенаправленная распланированная терапия может, например, уменьшить побочные эффекты облучения или подсказать, стоит ли менять основное лекарство. Кроме того, измеряя концентрации различных раковых биомаркеров, иногда можно диагностировать само новообразование и определить его злокачественность, но главное — вовремя выявить рецидив.

У некоторых возникает вопрос: а как сами пациенты реагируют на то, что в их тело вживили приборы и тем самым превратили в некоторого рода киборгов? Исследований по этой теме пока немного. Однако уже показано, что по крайней мере мужчины с раком простаты к вживлению биосенсоров относятся позитивно: идея стать киборгом пугает их гораздо меньше, чем вероятность потерять свою маскулинность из-за РПЖ [8].

Прогресс в технологиях

Широкое распространение имплантируемых девайсов тесно связано с техническими усовершенствованиями. Например, первые вживляемые кардиостимуляторы были размером с хоккейную шайбу, а использовать их можно было меньше трех лет. Сейчас же такие приборы стали гораздо компактнее и работают от 6 до 10 лет [4]. Кроме того, активно разрабатываются элементы питания, которые могли бы использовать собственную энергию тела пользователя — тепловую, кинетическую, электрическую или химическую.

Другое направление инженерной мысли — это разработка специального покрытия приборов, которое бы облегчало интеграцию девайса в организм и не вызывало воспалительного ответа. Подобные разработки уже существуют [9].

Совместить сенсор и живую ткань можно и иначе. Исследователи из Гарвардского университета разработали так называемые кибернетические ткани, которые не отторгаются организмом, но вместе с тем считывают датчиками нужные характеристики [10]. Их основа — это гибкая полимерная сетка с прикрепленными наноэлектродами или транзисторами [11]. Из-за большого количества пор она имитирует естественные поддерживающие структуры ткани. Ее можно заселять клетками: нейронами, кардиомиоцитами, клетками гладкой мускулатуры. Кроме того, мягкий каркас считывает физиологические параметры окружающей его среды в объеме и в режиме реального времени.

Сейчас гарвардская команда ученых успешно имплантировала такую сетку в мозг крысы для изучения активности и стимуляции отдельных нейронов (рис. 3) [12]. Каркас интегрировался в ткань и не вызвал иммунного ответа в течение пяти недель наблюдения. Чарльз Либер (Charles Lieber), руководитель лаборатории и главный автор публикаций [11, 12], считает, что «сеточка» может помочь даже в лечении болезни Паркинсона.

В дальнейшем разработку можно будет использовать и в регенеративной медицине, и в трансплантологии, и в клеточной биофизике. Она пригодится и при разработке новых лекарств: за реакцией клеток на вещество можно будет наблюдать в объеме.

введение сеточки в мозг

Рисунок 3. «Сеточка» в сложенном виде вводится в головной мозг шприцем, затем расправляется и отслеживает активность отдельных нейронов с помощью вмонтированных датчиков. Рисунок из [11].

 

Ученые предложили и другой завораживающий способ выхода из катастрофической ситуации с трансплантацией дефицитных органов. Так называемый сердечный кибернетический пластырь — это соединение органики и техники: живые кардиомиоциты, полимеры и сложная наноэлектронная 3D-система [13]. Созданная ткань с внедренной электроникой способна к растяжению, регистрации состояния микросреды и сердечных сокращений и даже проведению электростимуляции. «Пластырь» можно накладывать на поврежденный участок сердца — например, на зону некроза после инфаркта. Кроме того, он высвобождает факторы роста и лекарственные вещества типа дексаметазона, чтобы вовлечь стволовые клетки в процессы восстановления и уменьшить воспаление, например, после трансплантации (рис. 4). Устройство пока находится на самых ранних стадиях разработки, но планируется, что врач сможет отслеживать состояние пациента со своего компьютера в режиме реального времени. Для регенерации ткани в экстренных условиях «пластырь» сможет запустить выброс терапевтических молекул, которые заключены в электроактивные полимеры, причем положительно и отрицательно заряженные молекулы выпускают разные полимеры.

Как рассказывает профессор Двир (Tal Dvir), руководитель исследования из Университета Тель-Авива, в перспективе такое устройство сможет регулировать свое собственное состояние. Например, при обнаружении воспаления в окружающей его среде высвобождать противовоспалительный препарат, а при недостатке кислорода — молекулы, рекрутирующие сосудообразующие клетки к сердцу. Кстати, сейчас группа исследователей изучает, можно ли подобный киберпластырь использовать в головном и спинном мозге для лечения неврологических заболеваний.

кибернетическая ткань

Рисунок 4. Пример «кибернетической ткани» — сердечный «пластырь» из живых клеток сердца с внедренной наноэлектроникой. Он передает информацию об окружающей среде и сердечных сокращениях в режиме реального времени лечащему врачу, а тот при необходимости может с помощью пластыря стимулировать сердце либо запустить выброс активных молекул. Рисунок из [13].

 

Протез для мозга

Нейропротезирование — это, пожалуй, самая перспективная и желанная область развития вживляемых технологий. Вживление непосредственно в нервную систему интерфейса «мозг-машина» для прямого физического контакта девайса с нервными клетками не только помогает расширить наши знания о работе мозга, но и позволяет управлять протезами и выполнять с их помощью сложные движения [14]. Только что американские ученые смогли вернуть парализованному человеку возможность движения — после перелома шеи несколько лет назад [15].

Иан Беркхарт — первый парализованный человек, вновь получивший возможность двигать рукой благодаря развивающимся технологиям

Ранее считалось, что после травмы нейроны сильно реорганизуются и создают новые связи. Однако новое исследование показало, что степень реорганизации нервных клеток не так и высока.

Иан Беркхарт (Ian Burkhart) в 19 лет сломал себе шею, ныряя в волны на отдыхе. Сейчас он парализован ниже плеч и поэтому решил стать добровольцем в эксперименте исследовательской группы Чеда Бутона (Chad Bouton). Ученые сняли фМРТ (функциональную магнитно-резонансную томограмму) головного мозга испытуемого, пока тот фокусировал внимание на видео с движениями рук, и определили ответственную за это часть моторной коры. В нее и имплантировали чип, считывающий электрическую активность этой области мозга тогда, когда пациент представляет движения своей руки. Чип преобразует и передает сигнал через кабель к компьютеру, а далее эта информация идет в виде электрического сигнала на гибкий рукав вокруг правой руки испытуемого и стимулирует мышцы (рис. 5; видео).

стимуляция мышц

Рисунок 5. Сигнал от имплантированного в моторную кору чипа идет по кабелю к компьютеру, а затем, преобразуясь, попадает на «гибкий рукав» и стимулирует мышцы. Рисунок с сайта knews.kg.

 

После тренировок Иан может раздельно двигать пальцами и выполнять шесть разных движений запястья и кисти. Казалось бы, пока немного, но это уже позволяет поднять стакан воды и поиграть в видеоигру, изображающую исполнение музыки на электрогитаре. На вопрос, каково это — жить с имплантированным устройством, первый парализованный человек, которому вернули возможность двигаться, отвечает, что уже привык и не замечает его — более того, это как будто продолжение его тела.

Киберобщество

Люди с протезами, пожалуй, лучше всего вписываются в стандартное восприятие человека-машины. Однако таким киборгам жить в реальности гораздо труднее, чем аналогичным книжным и киношным персонажам. Статистика по мировой инвалидности поражает. По данным ВОЗ, около 15% населения Земли имеет физические недостатки разной степени, а от 110 до 190 миллионов человек испытывают значительные трудности с функционированием организма. Подавляющему большинству людей с ограниченными физическими возможностями приходится пользоваться обычными громоздкими колясками либо неудобными и дорогими протезами. Однако сейчас появилась возможность быстро, качественно и дешево создать нужный протез с помощью 3D-печати. Как считают ученые, именно таким способом можно помочь в первую очередь детям из развивающихся стран и всем тем, у кого ограничен доступ к медицинским услугам [16].

Некоторые действующие киборги даром времени не теряют и принимают участие в различных открытых встречах. Например, прошлогодний фестиваль Geek Picnic, прошедший в Москве и Санкт-Петербурге, был посвящен именно людям-машинам. Там можно было увидеть гигантскую роборуку, пообщаться с людьми, чье тело было усовершенствовано технологиями, и побывать в виртуальной реальности.

В октябре 2016 года в Цюрихе пройдет первая в мире олимпиада для людей с ограниченными физическими возможностями — Кибатлон (Cybathlon). На этом соревновании можно пользоваться теми устройствами, которые исключили из программы Паралимпийских игр. Некоторые уже окрестили это событие «олимпиадой для киборгов», поскольку немалый вклад в победу внесут технические приборы (рис. 6). Участники будут соревноваться в шести дисциплинах, используя электроприводные коляски, протезы и экзоскелеты, приборы для электрической стимуляции мышц и даже интерфейс «мозг-компьютер».

кибатлон

Рисунок 6. Кибатлон — первая олимпиада, в которой люди с ограниченными возможностями соревнуются друг с другом с помощью технических новинок. При победе одну медаль вручают спортсмену, вторую — разработчику механизма. Рисунок с сайта www.bbc.co.uk.

 

Спортсменов, управляющих машинами, окрестят «пилотами». В каждой дисциплине вручают две медали: одну — человеку, управляющему устройством, вторую — компании или лаборатории, разработавшей «чемпионский» механизм. По словам организаторов, главная цель соревнования — не только показать новые вспомогательные технологии для повседневной жизни, но и убрать границы между людьми с ограниченными физическими возможностями и широкой общественностью. Кроме того, как рассказал в интервью BBC профессор Роберт Райнер (Robert Riener) из Университета Швейцарии, олимпиада сможет свести вместе разработчиков и непосредственных пользователей новых устройств, что просто необходимо для совершенствования технологий: «Некоторые из современных разработок выглядят очень круто, но, чтобы стать практичными и удобными в применении, им предстоит проделать долгий путь». Остается надеяться, что человеческая составляющая не потеряется во время соревнований, и Кибатлон не обернется рекламной гонкой оборудования разных компаний.

Posthumans: киборги и биоэтика

Новые имплантируемые технологии в целом воспринимаются обществом позитивно. Это и не удивительно: ведь они поддерживают, восстанавливают и улучшают здоровье, облегчают доступ к медицинским услугам, при этом они безопасны и в будущем могут значительно снизить затраты на здравоохранение в мировом масштабе. Однако стоит заговорить о таких пациентах как о киборгах, как тут же всплывают коннотации из научной фантастики (рис. 7). Основные опасения связаны со страхом за человечность человека [17]: а что, если машины изменят человека, и он утратит свою человеческую сущность? Где граница между искусственным и естественным для человека и стоит ли использовать такое разделение для оценки какого-либо явления? Можно ли разделить пациента-киборга с вживленным прибором на две отдельные составляющие — человека и машину — или это уже цельный новый организм?

Кроме того, иногда даже в обычных больничных условиях невозможно разделить пациентов и аппараты для их поддержания [18]. Медперсоналу нужно заботиться о технике так, как если бы она была не просто продолжением организма больного, но и им самим.

робокоп

Рисунок 7. Робокоп — киборг, персонаж серии фантастических фильмов. Рисунок с сайта www.myconfinedspace.com.

 

Активно обсуждается и различие между терапией и улучшением организма: therapy vs. enhancement [19, 20]. Например, как бы вы отнеслись к соревнованию между барабанщиком, виртуозно владеющим двумя своими руками, и барабанщиком с одной своей рукой и рукой-протезом? А если бы вы узнали, что в протез встроены две барабанные палочки, одна из которых управляется датчиком, считывающим с мышц электромиограмму, а вторая не контролируется человеком и «импровизирует», подстраиваясь под первую палочку? Между прочим, такой протез вовсе не выдумка, а реальность: барабанщик Джейсон Барнс (Jason Barnes) потерял правую руку ниже локтя несколько лет назад и сейчас пользуется именно таким устройством. «Спорю, что многие металлисты-барабанщики позавидовали бы тому, что я могу делать. Скорость — это хорошо. Всегда чем быстрее, тем лучше», — говорит барабанщик-киборг.

Киборгу-барабанщику Джейсону Барнсу после потери части руки не было нужды прощаться с музыкальной карьерой: со специальным протезом он даст фору большинству своих коллег

 

Интересно, что споры ведутся не только о технике, но и о новых препаратах, улучшающих работу мозга. Появился даже специальный термин — нейроэтика — для обсуждения различных аспектов существования «улучшенных» с помощью нейроимплантов людей [21]. А если оперировать понятием прогрессивных технологий более широко, то к киборгам можно отнести и людей с биотехнологическими «улучшениями»: например, реципиентов органов, созданных из индуцированных плюрипотентых клеток.

Своеобразным ответом на такие дискуссии стала лондонская выставка Superhuman в Wellcome Collection [22]. На ней были представлены экспонаты, отражающие представления человека о совершенствовании своего тела: изображения летящего Икара, первые очки, «Виагра», фото первого «ребенка из пробирки», кохлеарные импланты... Может, именно тяга к улучшениям и новым разработкам — самая что ни на есть естественная для человека вещь?

По многим причинам прийти к единому мнению, что же делает человека человеком и кардинально отличает его, с одной стороны, от других живых существ, а с другой — от роботов, так и не удается.

Наконец, возникает еще один вопрос, о котором пока мало задумываются, — проблема безопасности и контролируемости. Как сделать подобные приборы устойчивыми к хакерским атакам? Ведь незащищенность таких разработок может быть крайне опасной не только для самогό пользователя, но и для окружающих. Возможно, именно этот вопрос будет больше всего волновать следующее поколение пользователей (рис. 8).

хакинг роботов

Рисунок 8. Богатая фантазия японских сценаристов уже воплотила тему хакерства в жизнь: вдруг в будущем киборгам придется расследовать убийства, совершенные взломанными роботами?.. Кадр из мультфильма «Призрак в доспехах 2: невинность».

 

Пожалуй, управляемые извне люди-киборги — самое страшное. По крайней мере, на сегодня. Однако с нервными системами попроще это активно практикуют. Например, для поисковых и спасательных целей успешно используют насекомых-биоботов — к примеру, мадагаскарских тараканов (рис. 9) [23–25]. Кроме того, такие модернизированные просто устроенные существа — еще и прекрасные опытные объекты для нейробиологии.

биобот

Рисунок 9. Биобот — существо с простой нервной системой, которую можно контролировать вживленной техникой. Повторить такое для мозга человека вряд ли удастся из-за сложной структуры органа. Рисунок из [25].

Заключение

Киборги уже живут среди нас — нравится это отдельным представителям общественности или нет. Технические границы раздвигаются, и наверняка новые разработки улучшат качество жизни многим людям с ограниченными возможностями и помогут в медицинской практике.

«Я думаю, что будущее борьбы с хроническими заболеваниями — это имплантируемые устройства, — рассказывает Сэди Криз (Sadie Creese) из Школы Мартина Оксфордского университета. — Они будут измерять жизненно важные характеристики и отсылать их поставщику медицинских услуг, кто бы это ни был и где бы он не находился». Таким образом, по мнению Сэди, можно себе представить консультантов и врачей по всему миру: в идеале любой местный врач мог бы получать оповещения о здоровье пациента с помощью одного-единственного приложения. Действительно, не исключено, что вся система ведения пациентов изменится уже в самое ближайшее время. Стόит окинуть взглядом быстро развивающуюся область вживляемых девайсов — и такой алгоритм уже не кажется несбыточным. А о мобильных приложениях и их применении в здравоохранении как раз и пойдет речь в следующей статье.

26.05.2016 Источник: biomolecula.ru

Частичное перепрограммирование восстанавливает молодую экспрессию генов за счет временного подавления идентичности клеток

 Авторы: Antoine Roux, Chunlian Zhang, Jonathan Paw, José Zavala-Solorio, Twaritha Vijay, Ganesh Kolumam, Cynthia Kenyon, Jacob C. Kimmel     Аннотация   Сообщалось, что временная индукция...

Читать далее

Профилирование эпигенетического возраста в отдельных клетках

 Авторы: Александр Трапп, Чаба Керепеси, Вадим Николаевич Гладышев     Аннотация   Метилирование ДНК определенного набора динуклеотидов CpG стало критическим и точным биомаркером процесса старения. Многовариантные модели машинного обучения, известные как...

Читать далее

Эпигенетические часы показывают омоложение во время эмбриогенеза, с последующим старением

      Краткое содержание   Представление о том, что клетки зародышевой линии не стареют, возникло еще  с 19-го века от идей Августа Вейсманна. Однако...

Читать далее

Мультиомиксное омоложение клеток человека путем кратковременного перепрограммирования в фазе созревания

      Краткое содержание   Старение - это постепенное снижение физической формы организма, которое со временем приводит к дисфункции тканей и заболеваниям. На клеточном...

Читать далее

Универсальный возраст по метилированию ДНК в тканях млекопитающих (препринт)

Новые результаты       Старение часто воспринимается как дегенеративный процесс, вызванный случайным накоплением клеточных повреждений с течением времени. Несмотря на это, возраст можно...

Читать далее

Ограниченное омоложение старых гемопоэтических стволовых клеток в молодой нише костного мозга

      Гемопоэтические стволовые клетки (HSC) с возрастом обнаруживают функциональные изменения, такие как снижение регенеративной способности и миелоидно-зависимая дифференцировка. Ниша HSC, которая...

Читать далее

Разведение плазмы улучшает когнитивные функции и снижает нейровоспаление у старых мышей

      Наше недавнее исследование установило, что факторы молодой крови не являются причиной и не являются необходимостью для системного омоложения тканей млекопитающих...

Читать далее

Пора кончать со старой кровью - Джош Миттельдорф

      2020 год обещает нам, что мы сможем сделать наши тела молодыми без явного восстановления молекулярных повреждений, но лишь просто изменив...

Читать далее

Омоложение тканей трех зародышевых листков путем замены плазмы старой крови солевым раствором альбумина

     Аннотация   Гетерохронный обмен крови омолаживает старые ткани, и большинство исследований о том, как это работает, фокусируется на молодой плазме, ее фракциях...

Читать далее

Обращение возраста: измерение эпигенетического возраста двух разных видов с помощью одних часов

   Аннотация   Известно, что молодая плазма крови оказывает благотворное влияние на различные органы у мышей. Однако не было известно, омолаживает ли молодая...

Читать далее

Прорыв в омоложении

  Если вы избегаете громких заявлений и в течении длительного времени соблюдаете дисциплину недосказывания посреди яркого неонового мира, то возможно вы...

Читать далее

Трансплантация ACE2-мезенхимальных стволовых клеток улучшает результат лечения у пациентов с пневмонией, вызванной COVID-19

Озвучить текст роботом: 

    Краткое содержание   Коронавирус (HCoV-19) вызвал новую вспышку коронавирусной болезни (COVID-19) в Ухане, Китай. Профилактика и реверсия...

Читать далее

Диагностика старения на основе 9 признаков «Hallmarks of Aging»

  “Если вы не можете измерить это, вы не можете улучшить его”, — так сказал Уильям Томсон, великий ирландский физик известный...

Читать далее

Паттерны биомаркеров старения, смертности и вредных мутаций проливают свет на начинающееся старение и причины ранней смертности - Гладышев 2019

Основные моменты Смертность от возрастных заболеваний U-образная с надиром ниже репродуктивного возраста Количественные биомаркеры старения постоянно меняются на протяжении всей жизни Бремя мутаций...

Читать далее

Клеточное старение. Определение пути вперед

Клеточное старение - это состояние клетки, вовлеченное в различные физиологические процессы и широкий спектр возрастных заболеваний. В последнее время быстро растет...

Читать далее

Видео: Суть старения и путь к долголетию - Гладышев В.Н.

Лекторий МГУ: Вадим Николаевич Гладышев, 28 мая 2019 г. 17.00Тема лектория: «Суть старения и путь к долголетию». Профессор Факультета биоинженерии и...

Читать далее

Японцы получили разрешение скрестить эмбрион человека и животного

Ученые давно проводят эксперименты по выведению различных гибридных видов животных. Как правило, это относится к лабораторным животным, опыты над которыми...

Читать далее

Мыши смогли восстановить ампутированные пальцы при помощи двух белков

  Возможно, в будущем люди смогут восстанавливать потерянные конечности — на это, во всяком случае, намекают медицинские эксперименты. Ученым уже известно...

Читать далее

Израильские учёные разработали универсальное лечение против рака

    Небольшая группа израильских учёных считает, что они нашли первое универсальное лечение против рака.  «Мы считаем, что через год мы предложим универсальное...

Читать далее

Клинические испытания первой омолаживающей терапии

    Самое первое человеческое испытание сенолитических лекарств, было объявлено ещё в июне, и большая часть мира практически не обратила внимания на него...

Читать далее

Старение внеклеточного матрикса

    Данная статья собрана из нескольких моих ранних заметок о влиянии внеклеточного матрикса на процесс старения. Текст статьи будет обновляться — я планирую...

Читать далее

Обзор достижений в борьбе со старением в 2018 году

   Каким был 2018 год в борьбе со старением? Год начался с хорошей новости. Под давлением общественности, ученых, организаций и сторонников борьбы со...

Читать далее

Таблетка от старости и кровь младенцев: достижения науки о старении в 2018 году

    2018-й принес обнадеживающие результаты в борьбе со старением и стал годом взрывного роста бизнеса на бессмертии. Начались испытания сенолитика — препарата, убивающего стареющие клетки, ключевого...

Читать далее

Китайский ученый заявил о рождении первых в мире генетически модифицированных детей

  Китайский ученый Цзянькуй Хэ заявил о рождении первых в мире детей из генетически отредактированных эмбрионов. По словам ученого, родились близняшки, у которых он попытался создать устойчивость к заражению...

Читать далее

Новая веха в медицине: Создан первый в мире сканер для всего тела

    Исследователи и ученые из Калифорнийского университета в Дейвисе со своими китайскими коллегами из компании United Imaging Healthcare (UIH) создали аппарат...

Читать далее

Первая искусственная роговица, напечатанная на 3D-принтере, уже готова для трансплантации

    Роговица — это крайне важная, но очень хрупкая часть нашего органа зрения. Она очень легко подвержена травмам и различным заболеваниям...

Читать далее

Ученые создают лазерный кожный регенератор из «Стартрека»

     Технологии из научно-фантастической вселенной «Стартрек» продолжают проникать в нашу реальную жизнь. Мы уже читали о медицинском трикодере, слышали о разработках...

Читать далее

Ученые создали универсальные имплантаты, которые не будут отторгаться организмом

  Любые материалы (в том числе и биологические), которые не созданы нашим организмом, в любом случае являются чужеродными и будут отторгаться...

Читать далее

«Получи я миллиард долларов сегодня, мы победили бы старение на 10 лет раньше. Это 400 миллионов жизней»

      Обри де Грей: большое интервью   В Москву на конференцию «Future in the City», которая пройдет 18 и 19 июля в башне «Империя» в Москва-Сити...

Читать далее

Генетик из Гарварда создал стартап по омоложению собак

В дальнейшем ученый намерен распространить исследования на людей.     Генетик, молекулярный инженер и химик Джордж Черч из Гарварда основал стартап Rejuvenate Bio...

Читать далее

Как наука приближает бессмертие к реальности?

    Поиски Понсе де Леоном фонтана вечной молодости могут быть легендой, но основная идея — поиск лекарства от старости — вполне реальна. Люди...

Читать далее

Секрет вечной жизни точно скрывается в наших клетках

    Однажды могущественный шумерский король по имени Гильгамеш отправился на происки, как это часто делают персонажи мифов и легенд. Гильгамеш стал...

Читать далее

Геронтологи готовы к прорыву

Остановись, старенье!   Ведущие ученые из 17 стран приехали в Россию, чтобы решить проблему старения. Именно теперь, по их мнению, накоплен критический...

Читать далее

Моя улучшенная версия: как жить вечно

      Джордж Чёрч [George Church] возвышается над большинством людей. У него длинная серая борода волшебника Средиземья, а работа всей его жизни...

Читать далее

Клеточная терапия без клеток: омоложение внеклеточными везикулами

  Восстановление сердечной мышцы после месяца терапии внеклеточными везикулами. Иммунные метки: агглютинин (красный), тропонин (зеленый) и DAPI (голубой)   Исследователи Колумбийского университета, работающие...

Читать далее

Биологи впервые собрали мышиный «эмбрион» прямо из стволовых клеток

  Бластоциста состоит из внешнего слоя клеток, из которого развивается плацента, и внутреннего – будущего детёныша. Здесь и ниже иллюстрации Nicolas...

Читать далее

Способ борьбы со старением: обращение вспять процесса снижения концентрации НАД+

    Старение сопровождается развитием метаболических нарушений и дряхлением. Недавние исследования продемонстрировали, что снижение уровня никотинамидадениндинуклеотида (НАД+) – ключевой фактор замедления обменных процессов, связанного...

Читать далее

Лекарства от старения, и Где они обитают

Время напрямую людей не убивает, старение – это биологический процесс. Есть группа заболеваний, которые называют возраст-ассоциированными, или старческими. Основным фактором риска...

Читать далее

Создан микроскоп, позволяющий наблюдать за движением клеток внутри организма

Ученые из Медицинского института Говарда Хьюза усовершенствовали метод флюоресцентной микроскопии таким образом, что теперь с ее помощью можно снимать в...

Читать далее

Ученые имплантировали маленький человеческий мозг мыши

Имплантация органов и тканей – вещь в науке далеко не новая. Не первый день существуют и так называемые кортикальные наборы...

Читать далее

В человеческих клетках впервые обнаружена новая форма ДНК

Ученые из австралийского Института медицинских исследований Гарвана сообщили об открытии в клетках человеческого организма необычных структур ДНК – i-мотивов (intercalated-motif...

Читать далее

Нанонож лишнего не отрежет: хирурги тестируют точечную терапию рака

Самое распространенное среди мужчин онкологическое заболевание, рак простаты, которым страдает примерно четверть пациентов урологических стационаров, до недавнего времени лечили хирургически — удаляли...

Читать далее

В США впервые в мире провели комплексную пересадку пениса и мошонки

Врачам из больницы Джона Хопкинса (штат Мэриленд) удалось провести успешную комплексную трансплантацию пениса и мошонки. Операция длилась 14 часов, в...

Читать далее

Антиоксидант MitoQ омолаживает сосуды

Результаты, полученные исследователями университета Колорадо в Боулдере, работающими под руководством профессора Дага Силса (Doug Seals), еще раз подтвердили, что применение...

Читать далее

Эпидемия молодости: как прожить 120 лет и стать счастливым

    Около 5% нынешних молодых и богатых проживут 120 лет и дольше, считают биохакеры. Читайте, что для этого нужно делать. Осенью 2017...

Читать далее

Имплантация пигментного слоя сетчатки помогла сохранить зрение

    Борьба с заболеваниями, которые в той или иной степени угрожают жизни человека – одно из самых приоритетных направлений современной медицины...

Читать далее

В США протестировали мозговой имплантат для улучшения памяти

    Американские исследователи провели проверку имплантата-электростимулятора, призванного усилить память. В среднем способность к запоминанию слов удалось улучшить на 15%. Если технология пройдет...

Читать далее

Ученым впервые удалось воссоздать легочную ткань

    Лечение стволовыми клетками находит все большее применение в медицинской практике. Так, например, группа китайских ученых из Университета Тунцзи не так...

Читать далее

Ученые МИЭТа планируют начать серийное производство аппарата вспомогательного кровообращения для детей уже в этом году

    В 2012 году благодаря ученым нашего университета была осуществлена первая в России успешная операция по имплантации «искусственного сердца» человеку. К...

Читать далее

Первый шаг к тканеинженерным надпочечникам

    Исследователи лондонского университета королевы Марии, работающие под руководством доктора Леонардо Гуасти (Leonardo Guasti), использовали репрограммированные клетки для создания первого прототипа...

Читать далее
Image

Оцифровка пользователя, Моделирование, 3D-визуализация.

Создание подробной цифровой копии на основе данных из медкарты.

Анализ данных. Исправление показателей организма.

Image

Взаимодействие цифровых профилей с целью улучшения показателей.

Обмен знаниями, проведение общих исследований.

Загрузка личного аватара в 3D мир. Игрификация, соревнования.

Image

В разработке

  • Официальная страница о медицинских чат-ботах на сайте Сверхчеловечество.рф
  • Подробности разработки чат-бота для проекта "Карта управления возрастом" (для партнеров и разработчиков) здесь:
Image

Обзор мировых разработок по хранению данных в разработке

Хранилище данных для Электронной Медицинской Карты Управления Возрастом в разработке

Материалы по теме:

Image

Основное взаимодействие планируется производить посредством Социальной сети:

Также существует множество специализированных телемедицинских сервисов:

Image

Данный раздел находится в разработке и будет доступен после запуска Электронной медицинской Карты Управления Возрастом:

Image

Основной материал сайта по теме искусственного интеллекта в медицине здесь:

На основе данной статьи будет определяться разработчик искусственного интеллекта для данной системы управления возрастом.

Image

ВАШ ЛИЧНЫЙ ВКЛАД В БОРЬБУ СО СТАРЕНИЕМ

Скооперируйтесь с тысячами других участников и создайте любой проект в области антистарения, проведите научные исспедования

Площадка для создания и финансирования проектов. Официальная страница сайта Сверхчеловечество.рф для сбора средств на ускорение прогресса в области омоложения:

Image
Image

Основная страница сайта Сверхчеловечество.рф о создании и участии в клинических испытаниях терапий антистарения и отката возраста организма здесь: