Bento Lab – лаборатория для анализа ДНК размером с ноутбук

01 2

Генетические исследования стоят довольно больших денег и требуют наличия в лаборатории громоздкого дорогостоящего оборудования. В самом ближайшем будущем ситуация может кардинально измениться, ведь лондонский стартап Bento Lab предлагает всем желающим приобрести компактную лабораторию для анализа ДНК, которая своими размерами сравнима с ноутбуком. На краудфандинговом портале Kickstarter была запущена кампания по поддержке этого многообещающего проекта, которая уже собрала в два раза больше средств, чем требовалось создателям переносной лаборатории.

02 1

При помощи переносной установки Bento Lab можно извлечь ДНК из любого биологического образца, после чего провести её простой генетический анализ. Набор содержит в себе все необходимые инструменты для молекулярной биологии, которыми учёные пользуются каждый день. Процесс происходит в три этапа. Сначала центрифуга выделяет ДНК из биологического образца (это может быть мясо, волосяные фолликулы, слюна и т. д.). Затем термоциклер выбирает определённую часть ДНК и делает миллионы её копий. А после этого при помощи гелевого электрофореза на специальной подсвеченной пластине вы сможете увидеть визуальные результаты и интерпретировать их.

03

04

Для чего такая лаборатория нужна и кого её создатели считают своими потенциальными покупателями? Как показал специально проведённый опрос, в подобной лаборатории заинтересованы различные учёные, которым необходимо проводить исследования в полевых условиях, где нет доступа к громоздкому оборудованию (Bento Lab весит всего 5 килограмм), энтузиасты, занимающиеся решением социальных проблем, микологи (специалисты по грибам) и фуражиры (специалисты по кормам для животных), фермеры, производители пива, повара молекулярной кухни, студенты, изучающие биологию, и многие другие.

06

Лаборатория Bento Lab будет доступна в двух вариантах. Первый подразумевает наличие у пользователя базы знаний по молекулярной биологии, а также различной научной мелочёвки вроде пипеток и реагентов. За 549 фунтов стерлингов (чуть более 53 000 рублей) вы получите саму лабораторию, кабель питания, установку для гелевого электрофореза и трансиллюминатор, а также инструкцию пользователя. Но если у вас нет необходимых для проведения исследований материалов, то придётся доплатить ещё и за них. Дополнительный набор обойдётся вам в 149 фунтов стерлингов (чуть более 14 000 рублей) и включает в себя буклет для начинающих генетиков, реагенты для извлечения ДНК, ПЦР-реагенты, реагенты для анализа ДНК, лабораторную пипетку, две коробки дополнительных насадок для пипетки, а также стерильные ватные палочки для сбора ДНК. Помимо этого, каждый, кто купит такой набор, получит полугодовую консультационную поддержку со стороны разработчиков, которую они предоставляют посредством Skype.

Создатели Bento Lab обещают, что первые коробки с компактными лабораториями будут разосланы покупателям уже осенью этого года. Поддержать проект вы можете на сайте Kickstarter.

31.03.2016 Источник: hi-news.ru

Как выглядят вирусы

18db3e229fc506c8ae4e35f7ff4176a0 

На прошлой неделе российская компания Visual Science показала первую в мире модель вируса Зика атомного разрешения. По словам создателей, изображения, сделанные на основе этой модели — самые подробные и научно достоверные из всех, что есть на сегодняшний день. Вирусами компания занимается уже не первый год, в ее «Зоопарке» есть и ВИЧ, и Эбола, и грипп, многие другие. О том, по каким стандартам работают в Visual Science и почему свои модели авторы называют самими точными в мире, мы поговорили с основателем компании Иваном Константиновым.

Когда началась работа над созданием модели вируса и сколько времени она заняла?

Для нас это рекордная по срокам работа. Обычно большие и сложные вирусы занимают восемь-девять месяцев моделирования. В случае с Зика мы бросили на работу все наши ресурсы и справились за три недели.

Я так понимаю, что интерес к этому вирусу связан с наблюдаемой сейчас вспышкой и возможной эпидемией вируса в Северной Америке?

Вообще, мы никогда не делали свои модели под какие-то глобальные события, «к случаю». Даже вирус Эбола, изображение которого использовалось практически всеми мировыми СМИ во время недавней вспышки 2014 года было сделано задолго до самой вспышки. Мы выбираем вирусы исходя из того, насколько они распространены и опасны, насколько интересна их структура. И, конечно, насколько хорошо она изучена. Но модель вируса Зика — это для нас первый опыт такого «скоростногогорячего» моделирования.

Сколько человек трудилось над моделью?

(считает) Восемь человек.

Вы говорите о своих моделях как о «самых научно достоверных изображениях» из тех, что существуют на сегодняшний день. В связи с этим возникают два вопроса. Во-первых, что это значит — что вы в вкладываете в понятие «научной достоверности» по отношению к модели? И, во-вторых, как эта достоверность достигается?

Следует прежде всего сказать, что наша компания основана молекулярными биологами и специалистами по биоинформатике. Поэтому наш научный бэкграунд определяет то, как мы подходим к моделированию. В основе нашего моделирования — упор на научную экспертизу, которая позволяет избежать тех ошибок, которыми изобилуют модели, если над ними работают исключительно дизайнеры и художники. Где в работе над моделью нет научной составляющей.

При создании каждого вируса мы работаем по следующей схеме. Сначала анализируем все доступные публикации, которые касаются его структуры, на основе чего составляется глобальный обзор литературы, формируемый по неким определенным внутренним стандартам. Мы определяем, какие из компонентов вируса изучены полностью — для которых из них есть данные рентгено-структурного анализа — и какие из них не изучены. Для каждого из компонентов определяем, каких из его фрагментов нет в рентгеновских структурах. Метод рентгено-структурного анализа предполагает, что многие участки белка, которые сложно кристаллизовать получить осложняют[1] получение кристаллов — трансмембранные фрагменты, участки с подвижной структурой и так далее — могут специально отрезаться учеными, так что их просто нет в опубликованных данных. Мы находим эти недостающие фрагменты и достраиваем их структуру на основе тех методов, которые сейчас используются для этого в науке (это данные о структуре родственных белков и методы молекулярной динамики).

На следующем этапе мы проводим предсказание белок-белковых взаимодействий внутри вируса: какие белки и какими поверхностями друг с другом контактируют в вирионе, как именно устроены белковые комплексы. Рентгено-структурный анализ информацию об этом обычно не дает, потому мы обращаемся к методам молекулярного докинга.

Бывает, когда строение компонентов некого вируса нам вообще пока не известно. В таком случае приходится использовать данные о родственных вирусах как шаблоны для новой структуры. Это тоже довольно распространенная методика в науке, для этого разработаны специальные протоколы, которые мы и используем при моделировании.

Наиболее дискуссионным моментом модели почти всегда является упаковка генома вируса. Это очень сложная задача, которая часто просто не может быть однозначно решена существующими методами. Поэтому мы всегда говорим, что показываем в модели только возможный вариант укладки генома. Мы, конечно, стараемся максимально полно предсказать для генома ДНК-белковые или РНК-белковые взаимодействия, пытаемся установить методами биоинформатики элементы третичной пространственной структуры РНК-геномов. Но абсолютно достоверно это сделать сейчас просто невозможно. Это самостоятельная, большая и интересная научная задача.

Плюс ко всему для каждого проекта мы отбираем наиболее авторитетных экспертов, которые посвятили многие годы изучению того или иного вируса, проводим с ними консультации. В случае вируса гриппа, например, это была группа Хайме Мартина-Бенито из Испанского национального центра биотехнологий и ряд других исследователей. Для ВИЧ это был Егор Воронин из Global HIV Vaccine Entreprise. При моделироваании Эбола мы общались с Рональдом Харти из Университета Пеннсильвании.

А Зика?

Вирус Зика — довольно экзотичная вещь, он долго был обделен вниманием ученых. В данном случае не было каких-то крупных научных групп, которые были бы лидерами в этом вопросе и могли бы нам помочь. К счастью, это вирус достаточно простой, и особой необходимости привлекать сторонних консультантов в данном случае не возникло, мы справились своими силами. Уже после того, как модель была готова, мы получили ряд минорных комментариев, касающихся, например, глубины погружения в мембрану трансмембранных фрагментов белков.

Что было самым сложным при создании этой модели?

Наверное, пространственная организация упаковки генома. Это всегда сложно.

У какого процента белков в случае вируса Зика уже есть рентгеновские структуры, а что вам приходилось восстанавливать методами моделирования по-аналогии?

Пока кристаллографические данные о структурах белков непосредственно вируса Зика не доступны, так что все пространственные модели были сделаны на основе прочитанного генома и близких белков из родственных вирусов Денге, Западного Нила или желтой лихорадки.

Вирус Зика — последнее пополнение в вашем «Зоопарке Вирусов». Расскажите, пожалуйста, что это за проект и какие цели вы перед ним ставите.

«Зоопарк» — это первая в мире попытка создать коллекцию научно достоверных моделей вирусов человека с атомным разрешением. Дело в том, что вирусы слишком маленькие для того, чтобы изучать их методами, которые подходят для исследования клеток. С другой стороны, они слишком большие, чтобы работать с ними как с белками и получать рентгеновские структуры. Получается, что мы довольно много знаем о строении отдельных вирусных компонентов и о том, как вирусы ведут себя в клетках. Но увидеть вирусы своими глазами, рассмотреть их во всех подробностях можно только с помощью компьютерного моделирования.

Тут есть даже некоторый парадокс: любой ребенок знает, как выглядит далекий от нас Марс, но на что похож вирус гриппа, которым мы все болеем ежегодно, знают немногие. Собственно, из этого желания — показать людям красоту и сложность микро и наномира вирусного мира — и вырос наш «Зоопарк Вирусов». Это прежде всего чисто просветительский и образовательный проект, и мы рады, что многие наши изображения уже попали на страницы ведущих учебников и руководств.

Не могу не спросить: мой любимый гигантский мимивирус попадет в «Зоопарк»?

Мимивирус, конечно, очень большой. Правда большой, не заражает человека, а “Зоопарк вирусов” прежде всего о вирусах человека. И, к тому же, довольно плохо изучен. Надо понимать, что в наших моделях представлены все молекулы, которые есть в вирионе, даже отдельные липиды мембраны. Поэтому даже в случае с Эболой счет молекул уже идет на миллионы, и моделирование требует очень больших ресурсов. В этом смысле мимивирус, который по размеру оставляет позади некоторые бактериальные клетки, выглядит, конечно, устрашающе. Видимо, для его моделирования нам потребуется разработать особый подход, так что это задача не ближайшего будущего. Пока мы сфокусированы на более изученных и распространенных вирусах — вирусе герпеса, гепатитов и еще десятке других.

 

a3a81a0d963286c13440660c58251ef8

Вирус Эбола

 

 

ccf604ec287b6016ad0cb187a0856e44
Вирус Гриппа A/H1N1
 
 
 

 

26980d2587e44f6b7afe9988f6422575

Вирус иммунодефицита человека

 
 
 

25b99a674b578452602e276788ffdc28

Вирус папилломы человека — HPV

 

 

b859136a58f88263b2dc738c95aee15b

Аденовирус

 

28.03.2016 Источник: nplus1.ru

Вечная молодость: как обмануть гены старости

1 gettyimages 119014661
Фото Kondo Photography / Getty Images
 
Ученые выявили больше тысячи генов, связанных с процессом старения. Воздействие на них позволяет продлевать жизнь. Пока у лабораторных животных

Генетика старения и продолжительности жизни является одной из фундаментальных дисциплин в исследовании процессов старения. Собственно, с нее и начались успехи в биологии старения, поскольку в начале 1990-х годов Синтия Кеньон из Университета Южной Калифорнии (США) показала, что мутация всего лишь в одном гене у модельного животного — круглого червя-нематоды C. elegans — приводит к увеличению продолжительности его жизни в 2 раза. Этот факт позволил многим исследователям поверить, что старение действительно можно существенно замедлить и сделать это возможно уже здесь и сейчас.

С тех пор исследования продолжались, к нематодам добавились другие модельные животные: плодовые мушки дрозофилы (излюбленный и хорошо изученный генетиками объект) и мыши. Благодаря использованию методов трансгенеза, все они тоже стали активно использоваться в исследованиях генетики старения. Если в эксперименте Синтии Кеньон имела место мутация, выключающая активность продукта определенного гена, то трансгенез позволяет исследовать, как, наоборот, активация дополнительных копий определенных генов способна влиять на продолжительность жизни и скорость старения.

И здесь самой удобной модельной системой оказались как раз плодовые мушки дрозофилы, поскольку продолжительность их жизни очень невелика.

Эксперименты с ними позволили открыть десятки генов продолжительности жизни.

Оказалось, что гены, ассоциированные со старением, в большинстве своем связаны с регуляцией метаболизма и реагированием клетки на недостаток нутриентов. Нутриенты — это питательные вещества, например аминокислоты, которые нужны для построения клеточных белков, обеспечивающих нашу жизнедеятельность. Гены, связанные с детекцией нутриентов, кодируют, прежде всего, различные киназы (разновидность ферментов. — Forbes), которые активизируют процессы клеточного роста и деления, но при этом из-за интенсификации метаболизма возрастает число ошибок, клетка быстрее стареет, и организм в целом — тоже. Поэтому мутации в генах, участвующих в регуляции метаболизма и ускоряющих его, приводят к замедлению старения и увеличению продолжительности жизни.

В качестве известного примера можно привести киназу mTOR. Она находится в центре метаболических путей, которые в ответ на наличие аминокислот в клетке запускают процессы синтеза белка, и в конечном итоге — роста и деления клеток. Но при этом данная киназа выключает за ненадобностью механизмы очищения клетки от внутриклеточного мусора. Аутофагия — это явление, когда клетка сама себя начинает переваривать, уничтожая прежде всего поврежденные митохондрии и агрегаты белков. Тем самым замедляется старение. А когда питательных веществ у клетки достаточно, ей энергозатратный процесс самопереваривания включать не нужно. Поэтому процесс старения ускоряется.

Выключение киназы mTOR посредством мутации или фармакологического ингибирования (замедления) приводит к активации аутофагии и замедлению старения. Ингибирующий эффект означает подавление функций определенного гена или кодируемого данным геном белка. Мы можем выключать активность продукта данного гена фармакологически, когда вещество связывается с каким-то ферментом, блокирует его активность или резко уменьшает ее. И если этот продукт гена был задействован в процессе старения, то мы получаем замедление старения.

Гены, которые можно отнести к генам долголетия, наоборот, участвуют в репаративных (восстановительных) процессах в клетке, например гены белков теплового шока. Когда клетка подвергается стрессу, белки в ней сбиваются в агрегаты, что не позволяет им выполнять какую-то функцию. В результате замедляется жизнедеятельность клетки (для клетки это плохо и приводит к ускоренному старению), и активируются белки теплового шока, которые растаскивают эти агрегаты или отправляют их на утилизацию (аутофагия).

Если трансгенез раньше активно использовался на простых модельных животных, таких как дрозофила, нематода, то в настоящее время все чаще проводятся более дорогие и длительные исследования, когда трансгенез осуществляют на мышах. Мыши  — это уже млекопитающие, эволюционно они близки к людям, поэтому такие исследования особенно ценны. Вот только эксперименты с мышами длятся целые годы. Зато результаты таких исследований, по сути, являются доклиническими испытаниями, результаты которых можно пытаться применять в медицинской практике.

Если мы знаем ген-мишень, мы можем пытаться регулировать его активность при нормальном старении, в том числе и в человеческом организме.

Это может быть либо фармакологическая регуляция, когда подбираются вещества, ингибирующие функцию продукта, предположим, старение-ассоциированного гена или, наоборот, выключающие ингибитор гена долголетия. Это фармакологический путь, который ведет в конечном итоге к созданию геропротекторов — фармакологических препаратов, замедляющих старение.

Однако на подходе уже и генная терапия, когда мы сможем управлять функцией гена в организме человека, внося, например, дополнительную копию и активизируя ее в какой-то ткани-мишени. С помощью генно-терапевтического подхода мы сможем замедлять процессы старения сосудов, чтобы побороть атеросклероз, замедлить сердечную недостаточность, бороться с болезнью Альцгеймера или Паркинсона. Именно сердечно-сосудистые, метаболические и нейродегенеративные возрастные болезни являются основными причинами смертности на сегодняшний день.

Генетика старения и продолжительности жизни за последние пару десятков лет позволила выявить больше тысячи генов-мишеней, ассоциированных со старением и долголетием. И ряд этих генов-мишеней кодируют белки, для которых известны фармакологические регуляторы. Например, уже упоминавшаяся киназа mTOR имеет в качестве ингибитора вещество, которое называется рапамицин. И было показано, что добавление рапамицина способно приводить к увеличению продолжительности жизни у мышей до 25%. Кроме того, эксперименты Синтии Кеньон в свое время показали, что мутации в гене киназы P3K могут приводить к увеличению продолжительности жизни вдвое. А наши эксперименты уже на дрозофиле выявили, что фармакологические ингибиторы киназы P3K приводят к 20%-ному увеличению продолжительности жизни. Это, конечно, не увеличение в разы, но, тем не менее, наши фармакологические эффекты воспроизводят генетический подход, что вселяет надежду на их применение в будущих лекарствах.

Ингибиторы циклооксигеназ (ферментов, которые участвуют в процессах воспаления), такие как аспирин, ибупрофен — тоже являются, по-видимому, потенциальными геропротекторами и, замедляя процесс старения, увеличивают продолжительность жизни в модельных экспериментах. Геропротекторный эффект ибупрофена был выявлен международной командой исследователей из Вашингтонского университета, Института старения Бака и нашей группой одновременно на трех модельных организмах, что вселяет надежду на универсальность этого эффекта и его применение в медицине. Спектр таких препаратов сейчас существенно расширяется.

К сожалению, фармакологически не все мишени являются доступными, не все регулируются какими-то веществами, но здесь может помочь генная терапия. Уже есть два исследования на мышах, когда с помощью генной терапии продолжительность их жизни увеличивалась на 22%. И еще один эксперимент показал, что введение гена теломеразы (дополнительной копии гена фермента, достраивающего концы хромосом)  тоже очень существенно продлевало жизнь мышам. То есть те мишени, которые фармакологически недоступны, мы в перспективе сможем регулировать уже с помощью генной терапии.

26.03.2016 Источник: forbes.ru

Создана 3D-карта нейронов головного мозга

pic 4f08bb771a82138e164250f5b1ca9c29

Международная группа нейробиологов из Института Аллена, Гарвардской медицинской школы и исследовательской инициативы в области нейроэлектроники NERF опубликовали самую большую из ныне существующих карт нейронных сетей в коре головного мозга, где происходят такие сложные процессы, как обработка памяти. Результаты исследования опубликованы в журнале Nature.

По словам ученых, полученный результат представляет собой кульминацию десятилетней исследовательской программы. С помощью современных методов были собраны огромные массивы данных по мозговой активности, которые позволяют найти связь между структурой мозга и ее функциями. Теперь нейробиологи собираются заняться выяснением того, за какие типы обработки сигналов отвечают определенные нейронные схемы.

Ученые уже обнаружили некоторые свидетельства того, что в коре головного мозга нейронные сети обладают модульной структурой. Кроме того, были выявлены закономерности организации связи между нейронами. Опираясь на эти данные, исследователи планируют начать поиск нейронных цепей в коре головного мозга, которые могли бы выполнять различные мозговые функции.

Чтобы создать карту нейронных сетей, ученые начали с картографирования зрительной коры мозга мыши, нейроны которой реагировали на определенные визуальные стимулы, например вертикальные или горизонтальные линии на экране. После этого были сделаны ультратонкие срезы мозга, чтобы получить миллионы изображений нейронов и синапсов, которые затем реконструировали для создания 3D-модели.

Исследования уже дали первые результаты. Например, ученые получили доказательства, что нейроны со схожими функциями будут связаны друг с другом большим числом синапсов, чем нейроны с разными функциями.

Ранее нейрофизиологи из Швейцарии создали компьютерную модель мозга крысы, которая включала в себя 31 тысячу нейронов и 37 миллионов синапсов. Для ее создания был использован один из самых производительных суперкомпьютеров Blue Brain IV.

29.03.2016 Источник: lenta.ru

 

На что способны имплантированные в мозг микрочипы и нанопыль, которая их заменит

Недавно группа нейрофизиологов из лаборатории профессора Медицинской школы Университета Дьюка Мигеля Николесиса (Miguel Nicolelis) продемонстрировала управление колесной платформой с помощью сигналов, полученных от электродов, имплантированных в моторную кору мозга обезьяны. Такие работы открывают перспективы создания протезов и инвалидных кресел для парализованных больных, которые смогут управлять их движением просто «силой мысли». С другой стороны, хирургическая имплантация электродов в мозг остается пугающей и опасной процедурой, способной ограничить применение этих технологий. О том, как проходили эксперименты с обезьянами и какое будущее ждет инвазивные методы регистрации активности нейронов, мы поговорили с одним из авторов работы, исследователем из Университета Дьюка Михаилом Лебедевым.

«N+1»: За последние годы ваша группа провела совершенно потрясающие работы с использованием микроэлектродов: расширение видимого спектра крыс подключением ИК-датчиков; управление сразу парой роборук за счет сигналов, полученных из моторной коры обезьяны; соединение мозгов двух обезьян в единое управляющее устройство... На таком ярком фоне новая работа с «мысленным» контролем над колесной платформой чем-то выделяется?

М.Л.: Выделяется, причем достаточно заметно. Дело в том, что прежде считывание сигналов с моторной коры рассматривалось только с точки зрения управления конечностью — рукой, ногой... При этом нейронные механизмы, связанные с перемещением всего тела, остаются нераскрытыми даже на фундаментальном уровне. Поэтому до самого начала экспериментов оставалось неясным, сможем ли мы в принципе, считывая сигналы управления руками и ногами, интерпретировать их с точки зрения движения всего тела. У обезьяны не было никакого рычага и других способов направлять колесную платформу — она просто представляла соответствующие движения рук и ног в пространстве.

Можно вспомнить, как обычно рисуют мозг с моторным гомункулусом: одной области соответствуют нейроны, управляющие движением руки, другой — ноги или шеи... Обратите внимание: на этой схеме нигде нет группы нейронов, которая бы соответствовала телу в целом, его перемещению в пространстве. Так как области мозга, представляющие все тело, пока не описаны, мы попробовали получить нужный сигнал из активностей нейронов, которые управляют конечностями, и на том же гомункулусе ярко выделяются.

Более того, сейчас мы готовим статью, связанную с продолжением этой истории. В новом варианте эксперимента мы скомбинировали его с подходом, который использовали раньше, в работе с «объединением» двух мозгов: одна обезьяна ездила в своей тележке, а другая сидела в углу, наблюдая за ней. Движения тележки отражались в мозге и водителя, и наблюдателя. В этом большой новости нет: известно, что движения существ, за которыми человек наблюдает, зеркалируется в активности и его собственных нейронов. Однако нам удалось объединить сигналы и «водителя», и «наблюдателя», а затем передать управление колесами итоговому, суммирующему сигналу.

w512

«N+1»:Тут возникает вопрос о том, как именно выделяется нужный сигнал. Для интерпретации данных о возбуждении сотен нейронов понадобилась нейронная сеть?

М.Л.: В этой части мы решили поступить максимально просто и использовали сравнительно несложный метод выделения сигнала, фильтр Винера. Упрощенно говоря, наша модель получала данные по частоте разрядов нейронов, умножала активность каждого на определенный весовой коэффициент, суммировала и на выходе давала нужный параметр — в нашем случае, это либо скорость движения вперед-назад, либо угловая скорость, соответствующая вращению тележки вокруг вертикальной оси. Такой фильтр, конечно, нуждается в предварительном обучении, чтобы выбрать правильные коэффициенты.

На этапе обучения фильтра обезьяна не управляла тележкой, а просто каталась на ней, движения колес случайным образом задавал компьютер. С помощью наших электродов мы регистрировали активность, которая возникала в моторной коре обезьяны в ответ на разные виды движений. Фильтр Винера оценивал эту активность и в зависимости от ее величины в каждом случае присваивал два коэффициента: «вклад» нейрона в движение вперед-назад и в поворот вокруг своей оси. То есть, если нейрон активно возбуждался при таком движении, он получал большой коэффициент, если нет, то маленький.

Из опыта мы знаем, что это не очень сложная задача, и для обучения фильтра при том количестве входных данных, что мы имеем, — а это порядка 300 нейронов с двух полушарий — достаточно сеанса максимум в 10 минут. Затем мы уже можем передать управление обезьяне.

При попытке двинуться в определенную сторону ее нейроны разряжаются, эти данные снимаются и поступают в обученный фильтр, где перемножаются на нужные коэффициенты, суммируются — и мы получаем на выходе две скоростные компоненты. При этом, по мере того как обезьяна осваивает такое управление, ее мозг пластично адаптируется, выдавая все более четкий сигнал, и обезьяна быстрее добирается до награды.

w513

«N+1»:Получив такой обученный фильтр, мы можем применить его на другом животном?

М.Л.: Нет, такого не получится. Имплантируя микроэлектроды, мы, конечно, попадаем в нужную область очень точно, но не с точностью до нейрона. Да и локализация нейронов у каждого животного индивидуальна. Поэтому даже одни и те же электроды у разных обезьян могут записывать разные показатели, фактически, случайным образом.

Можно добавить, что животные, которых мы использовали в экспериментах, ходят с «хронически» имплантированными электродами не первый год. Они уже участвовали во многих опытах, в основном, по управлению роботизированной рукой.

«N+1»: Звучит довольно брутально. Вообще, на фоне быстрого развития неинвазивных методов получения данных об активности мозга — таких как ЭЭГ или томография — не теряют ли микроэлектроды актуальности? Ведь они требуют хирургической имплантации, вскрытия черепной коробки и так далее...

М.Л.: Никоим образом. Та же ЭЭГ, по сути, какой была сто лет назад, такой и остается сегодня — прогресс в этой области заключается, в основном, в улучшении алгоритмов и средств интерпретации данных. Но в целом он по-прежнему не позволяет получать точные, высококачественные сигналы, и вряд ли это измениться в будущем. ЭЭГ данные — это всегда данные о синхронном срабатывании достаточно большого количества нейронов.

Возникает даже своего рода парадокс. Ведь когда нейроны делают что-то осмысленное — например, управляют рукой, — они разряжаются небольшими группами. А синхронная активность проявляется как раз в периоды, когда они никакой осмысленной, нужной нам для интерпретации деятельностью не занимаются. Самые масштабные синхронные срабатывания наблюдаются во сне, и ЭЭГ во сне демонстрируют самую большую амплитуду. Поэтому системы ЭЭГ работают «от обратного»: сильный сигнал означает, что субъект находится в покое, слабый — что он чем-то занят. При этом детали этого занятия совершенно ускользают.

В силу этих причин думаю, что ЭЭГ и близкие ему методы будут развиваться больше в сторону нейрореабилитации, помощи больным после инсультов и тому подобных вещей. А для более тонкого контроля, в любом случае, понадобятся инвазивные методы. Конечно, со стороны сегодня они кажутся достаточно страшными: нужно открыть череп, вставить электроды... Но, думаю, эти проблемы будут решены в ближайшие 10–20 лет.

w514

«N+1»: Вспоминается недавняя работа австралийских ученых, предложивших микроэлектрод, который проникает в мозг по сосудам и «раскрывается» в нужном месте, фиксируясь и снимая активность соседних нейронов. Вы имеете в виду такие решения?

М.Л.: Это, безусловно, очень хорошая идея. Главное — что качество записи, которое дает такой подход, сравнимо с данными электрокортикографии, при которой электроды просто кладутся на поверхность мозга, но внутрь нервной ткани не вводятся, так что это достаточно безопасно. Запись «через сосуды» дает такое же разрешение, но при этом позволяет добраться и в глубинные структуры мозга, работая и в подкорковых областях. С другой стороны, конечно, возникают вопросы о том, насколько безопасно ходить с такими электродами в сосудах, не будут ли они провоцировать нарушения кровоснабжения и все подобное — это еще стоит тщательно изучить.

Нельзя забывать и о том, что активно развиваются нанотехнологии, которые теоретически позволят сделать электроды очень и очень маленькими. Существует даже концепция использования «нанопыли», — частиц, которые будут проникать в мозг и считывать активность индивидуальных нейронов, передавая эти данные на устройство, расположенное снаружи черепа. Возможностей минимизировать опасность инвазивного подхода у нас достаточно.

Беседовал Роман Фишман

21.03.2016 Источник: nplus1.ru

Частичное перепрограммирование восстанавливает молодую экспрессию генов за счет временного подавления идентичности клеток

 Авторы: Antoine Roux, Chunlian Zhang, Jonathan Paw, José Zavala-Solorio, Twaritha Vijay, Ganesh Kolumam, Cynthia Kenyon, Jacob C. Kimmel     Аннотация   Сообщалось, что временная индукция...

Читать далее

Профилирование эпигенетического возраста в отдельных клетках

 Авторы: Александр Трапп, Чаба Керепеси, Вадим Николаевич Гладышев     Аннотация   Метилирование ДНК определенного набора динуклеотидов CpG стало критическим и точным биомаркером процесса старения. Многовариантные модели машинного обучения, известные как...

Читать далее

Эпигенетические часы показывают омоложение во время эмбриогенеза, с последующим старением

      Краткое содержание   Представление о том, что клетки зародышевой линии не стареют, возникло еще  с 19-го века от идей Августа Вейсманна. Однако...

Читать далее

Мультиомиксное омоложение клеток человека путем кратковременного перепрограммирования в фазе созревания

      Краткое содержание   Старение - это постепенное снижение физической формы организма, которое со временем приводит к дисфункции тканей и заболеваниям. На клеточном...

Читать далее

Универсальный возраст по метилированию ДНК в тканях млекопитающих (препринт)

Новые результаты       Старение часто воспринимается как дегенеративный процесс, вызванный случайным накоплением клеточных повреждений с течением времени. Несмотря на это, возраст можно...

Читать далее

Ограниченное омоложение старых гемопоэтических стволовых клеток в молодой нише костного мозга

      Гемопоэтические стволовые клетки (HSC) с возрастом обнаруживают функциональные изменения, такие как снижение регенеративной способности и миелоидно-зависимая дифференцировка. Ниша HSC, которая...

Читать далее

Разведение плазмы улучшает когнитивные функции и снижает нейровоспаление у старых мышей

      Наше недавнее исследование установило, что факторы молодой крови не являются причиной и не являются необходимостью для системного омоложения тканей млекопитающих...

Читать далее

Пора кончать со старой кровью - Джош Миттельдорф

      2020 год обещает нам, что мы сможем сделать наши тела молодыми без явного восстановления молекулярных повреждений, но лишь просто изменив...

Читать далее

Омоложение тканей трех зародышевых листков путем замены плазмы старой крови солевым раствором альбумина

     Аннотация   Гетерохронный обмен крови омолаживает старые ткани, и большинство исследований о том, как это работает, фокусируется на молодой плазме, ее фракциях...

Читать далее

Обращение возраста: измерение эпигенетического возраста двух разных видов с помощью одних часов

   Аннотация   Известно, что молодая плазма крови оказывает благотворное влияние на различные органы у мышей. Однако не было известно, омолаживает ли молодая...

Читать далее

Прорыв в омоложении

  Если вы избегаете громких заявлений и в течении длительного времени соблюдаете дисциплину недосказывания посреди яркого неонового мира, то возможно вы...

Читать далее

Трансплантация ACE2-мезенхимальных стволовых клеток улучшает результат лечения у пациентов с пневмонией, вызванной COVID-19

Озвучить текст роботом: 

    Краткое содержание   Коронавирус (HCoV-19) вызвал новую вспышку коронавирусной болезни (COVID-19) в Ухане, Китай. Профилактика и реверсия...

Читать далее

Диагностика старения на основе 9 признаков «Hallmarks of Aging»

  “Если вы не можете измерить это, вы не можете улучшить его”, — так сказал Уильям Томсон, великий ирландский физик известный...

Читать далее

Паттерны биомаркеров старения, смертности и вредных мутаций проливают свет на начинающееся старение и причины ранней смертности - Гладышев 2019

Основные моменты Смертность от возрастных заболеваний U-образная с надиром ниже репродуктивного возраста Количественные биомаркеры старения постоянно меняются на протяжении всей жизни Бремя мутаций...

Читать далее

Клеточное старение. Определение пути вперед

Клеточное старение - это состояние клетки, вовлеченное в различные физиологические процессы и широкий спектр возрастных заболеваний. В последнее время быстро растет...

Читать далее

Видео: Суть старения и путь к долголетию - Гладышев В.Н.

Лекторий МГУ: Вадим Николаевич Гладышев, 28 мая 2019 г. 17.00Тема лектория: «Суть старения и путь к долголетию». Профессор Факультета биоинженерии и...

Читать далее

Японцы получили разрешение скрестить эмбрион человека и животного

Ученые давно проводят эксперименты по выведению различных гибридных видов животных. Как правило, это относится к лабораторным животным, опыты над которыми...

Читать далее

Мыши смогли восстановить ампутированные пальцы при помощи двух белков

  Возможно, в будущем люди смогут восстанавливать потерянные конечности — на это, во всяком случае, намекают медицинские эксперименты. Ученым уже известно...

Читать далее

Израильские учёные разработали универсальное лечение против рака

    Небольшая группа израильских учёных считает, что они нашли первое универсальное лечение против рака.  «Мы считаем, что через год мы предложим универсальное...

Читать далее

Клинические испытания первой омолаживающей терапии

    Самое первое человеческое испытание сенолитических лекарств, было объявлено ещё в июне, и большая часть мира практически не обратила внимания на него...

Читать далее

Старение внеклеточного матрикса

    Данная статья собрана из нескольких моих ранних заметок о влиянии внеклеточного матрикса на процесс старения. Текст статьи будет обновляться — я планирую...

Читать далее

Обзор достижений в борьбе со старением в 2018 году

   Каким был 2018 год в борьбе со старением? Год начался с хорошей новости. Под давлением общественности, ученых, организаций и сторонников борьбы со...

Читать далее

Таблетка от старости и кровь младенцев: достижения науки о старении в 2018 году

    2018-й принес обнадеживающие результаты в борьбе со старением и стал годом взрывного роста бизнеса на бессмертии. Начались испытания сенолитика — препарата, убивающего стареющие клетки, ключевого...

Читать далее

Китайский ученый заявил о рождении первых в мире генетически модифицированных детей

  Китайский ученый Цзянькуй Хэ заявил о рождении первых в мире детей из генетически отредактированных эмбрионов. По словам ученого, родились близняшки, у которых он попытался создать устойчивость к заражению...

Читать далее

Новая веха в медицине: Создан первый в мире сканер для всего тела

    Исследователи и ученые из Калифорнийского университета в Дейвисе со своими китайскими коллегами из компании United Imaging Healthcare (UIH) создали аппарат...

Читать далее

Первая искусственная роговица, напечатанная на 3D-принтере, уже готова для трансплантации

    Роговица — это крайне важная, но очень хрупкая часть нашего органа зрения. Она очень легко подвержена травмам и различным заболеваниям...

Читать далее

Ученые создают лазерный кожный регенератор из «Стартрека»

     Технологии из научно-фантастической вселенной «Стартрек» продолжают проникать в нашу реальную жизнь. Мы уже читали о медицинском трикодере, слышали о разработках...

Читать далее

Ученые создали универсальные имплантаты, которые не будут отторгаться организмом

  Любые материалы (в том числе и биологические), которые не созданы нашим организмом, в любом случае являются чужеродными и будут отторгаться...

Читать далее

«Получи я миллиард долларов сегодня, мы победили бы старение на 10 лет раньше. Это 400 миллионов жизней»

      Обри де Грей: большое интервью   В Москву на конференцию «Future in the City», которая пройдет 18 и 19 июля в башне «Империя» в Москва-Сити...

Читать далее

Генетик из Гарварда создал стартап по омоложению собак

В дальнейшем ученый намерен распространить исследования на людей.     Генетик, молекулярный инженер и химик Джордж Черч из Гарварда основал стартап Rejuvenate Bio...

Читать далее

Как наука приближает бессмертие к реальности?

    Поиски Понсе де Леоном фонтана вечной молодости могут быть легендой, но основная идея — поиск лекарства от старости — вполне реальна. Люди...

Читать далее

Секрет вечной жизни точно скрывается в наших клетках

    Однажды могущественный шумерский король по имени Гильгамеш отправился на происки, как это часто делают персонажи мифов и легенд. Гильгамеш стал...

Читать далее

Геронтологи готовы к прорыву

Остановись, старенье!   Ведущие ученые из 17 стран приехали в Россию, чтобы решить проблему старения. Именно теперь, по их мнению, накоплен критический...

Читать далее

Моя улучшенная версия: как жить вечно

      Джордж Чёрч [George Church] возвышается над большинством людей. У него длинная серая борода волшебника Средиземья, а работа всей его жизни...

Читать далее

Клеточная терапия без клеток: омоложение внеклеточными везикулами

  Восстановление сердечной мышцы после месяца терапии внеклеточными везикулами. Иммунные метки: агглютинин (красный), тропонин (зеленый) и DAPI (голубой)   Исследователи Колумбийского университета, работающие...

Читать далее

Биологи впервые собрали мышиный «эмбрион» прямо из стволовых клеток

  Бластоциста состоит из внешнего слоя клеток, из которого развивается плацента, и внутреннего – будущего детёныша. Здесь и ниже иллюстрации Nicolas...

Читать далее

Способ борьбы со старением: обращение вспять процесса снижения концентрации НАД+

    Старение сопровождается развитием метаболических нарушений и дряхлением. Недавние исследования продемонстрировали, что снижение уровня никотинамидадениндинуклеотида (НАД+) – ключевой фактор замедления обменных процессов, связанного...

Читать далее

Лекарства от старения, и Где они обитают

Время напрямую людей не убивает, старение – это биологический процесс. Есть группа заболеваний, которые называют возраст-ассоциированными, или старческими. Основным фактором риска...

Читать далее

Создан микроскоп, позволяющий наблюдать за движением клеток внутри организма

Ученые из Медицинского института Говарда Хьюза усовершенствовали метод флюоресцентной микроскопии таким образом, что теперь с ее помощью можно снимать в...

Читать далее

Ученые имплантировали маленький человеческий мозг мыши

Имплантация органов и тканей – вещь в науке далеко не новая. Не первый день существуют и так называемые кортикальные наборы...

Читать далее

В человеческих клетках впервые обнаружена новая форма ДНК

Ученые из австралийского Института медицинских исследований Гарвана сообщили об открытии в клетках человеческого организма необычных структур ДНК – i-мотивов (intercalated-motif...

Читать далее

Нанонож лишнего не отрежет: хирурги тестируют точечную терапию рака

Самое распространенное среди мужчин онкологическое заболевание, рак простаты, которым страдает примерно четверть пациентов урологических стационаров, до недавнего времени лечили хирургически — удаляли...

Читать далее

В США впервые в мире провели комплексную пересадку пениса и мошонки

Врачам из больницы Джона Хопкинса (штат Мэриленд) удалось провести успешную комплексную трансплантацию пениса и мошонки. Операция длилась 14 часов, в...

Читать далее

Антиоксидант MitoQ омолаживает сосуды

Результаты, полученные исследователями университета Колорадо в Боулдере, работающими под руководством профессора Дага Силса (Doug Seals), еще раз подтвердили, что применение...

Читать далее

Эпидемия молодости: как прожить 120 лет и стать счастливым

    Около 5% нынешних молодых и богатых проживут 120 лет и дольше, считают биохакеры. Читайте, что для этого нужно делать. Осенью 2017...

Читать далее

Имплантация пигментного слоя сетчатки помогла сохранить зрение

    Борьба с заболеваниями, которые в той или иной степени угрожают жизни человека – одно из самых приоритетных направлений современной медицины...

Читать далее

В США протестировали мозговой имплантат для улучшения памяти

    Американские исследователи провели проверку имплантата-электростимулятора, призванного усилить память. В среднем способность к запоминанию слов удалось улучшить на 15%. Если технология пройдет...

Читать далее

Ученым впервые удалось воссоздать легочную ткань

    Лечение стволовыми клетками находит все большее применение в медицинской практике. Так, например, группа китайских ученых из Университета Тунцзи не так...

Читать далее

Ученые МИЭТа планируют начать серийное производство аппарата вспомогательного кровообращения для детей уже в этом году

    В 2012 году благодаря ученым нашего университета была осуществлена первая в России успешная операция по имплантации «искусственного сердца» человеку. К...

Читать далее

Первый шаг к тканеинженерным надпочечникам

    Исследователи лондонского университета королевы Марии, работающие под руководством доктора Леонардо Гуасти (Leonardo Guasti), использовали репрограммированные клетки для создания первого прототипа...

Читать далее
Image

Оцифровка пользователя, Моделирование, 3D-визуализация.

Создание подробной цифровой копии на основе данных из медкарты.

Анализ данных. Исправление показателей организма.

Image

Взаимодействие цифровых профилей с целью улучшения показателей.

Обмен знаниями, проведение общих исследований.

Загрузка личного аватара в 3D мир. Игрификация, соревнования.

Image

В разработке

  • Официальная страница о медицинских чат-ботах на сайте Сверхчеловечество.рф
  • Подробности разработки чат-бота для проекта "Карта управления возрастом" (для партнеров и разработчиков) здесь:
Image

Обзор мировых разработок по хранению данных в разработке

Хранилище данных для Электронной Медицинской Карты Управления Возрастом в разработке

Материалы по теме:

Image

Основное взаимодействие планируется производить посредством Социальной сети:

Также существует множество специализированных телемедицинских сервисов:

Image

Данный раздел находится в разработке и будет доступен после запуска Электронной медицинской Карты Управления Возрастом:

Image

Основной материал сайта по теме искусственного интеллекта в медицине здесь:

На основе данной статьи будет определяться разработчик искусственного интеллекта для данной системы управления возрастом.

Image

ВАШ ЛИЧНЫЙ ВКЛАД В БОРЬБУ СО СТАРЕНИЕМ

Скооперируйтесь с тысячами других участников и создайте любой проект в области антистарения, проведите научные исспедования

Площадка для создания и финансирования проектов. Официальная страница сайта Сверхчеловечество.рф для сбора средств на ускорение прогресса в области омоложения:

Image
Image

Основная страница сайта Сверхчеловечество.рф о создании и участии в клинических испытаниях терапий антистарения и отката возраста организма здесь: