Искусственный человек на чипе изменит фармацевтику

Мария Сотскова, Виталий Кавтарадзе, «Популярная механика» № 1-2015
Опубликовано на сайте «Элементы»

Homunculus1

Гомункул – существо из пробирки, искусственный человек, мечта и несбыточная цель средневековых алхимиков. Но если ученые прошлого имели скорее эгоистичные цели – стать ближе к Творцу и познать некую «истину» жизни, сейчас подход более чем гуманистический.

Вы когда-нибудь задумывались о технологии производства фармацевтических препаратов? От разработки до внедрения лекарства проходят долгий путь – от химической формулы до успешного маркетингового проекта. Но самый сложный и этически спорный момент – это тестирование на животных и дальнейшие испытания на людях. Для тестов обычно используют мышей, ибо их геном весьма близок к человеческому, но все же некоторые специфические реакции проследить не удается.

Существует более 200 факторов совместимости групп крови, примерно столько же веществ-мишеней для лекарств, отвечающих за иммунитет, и множество других уникальных особенностей. Что же случится, если производитель не сможет учесть хотя бы один фактор, не говоря уже об индивидуальных чертах организма? Подобные невольные ошибки приводят к множеству потерянных жизней (за десять лет погибло 1000 испытателей) и к огромным финансовым затратам фармацевтических компаний на вывод препарата из производства, а также судебные иски и восстановление репутации. Разумеется, все эти затраты ложатся на плечи потребителей.

В качестве альтернативы испытаниям на животных в последние годы стала активно применяться технология тестирования на отдельных клеточных культурах. Однако, хотя эта методика снимает этическую проблему, она не дает системного подхода к исследованиям. Ведь препарат, призванный, например, лечить печень, может пагубно сказываться на желудке и почках или даже вызывать смертельно опасную реакцию иммунной системы. Выход из патовой ситуации ученые ищут на стыке биологии и высоких технологий.

Дорога в Россию

«Популярная механика» побывала в лаборатории московского научно-технического центра «БиоКлиникум», где с 2008 года ведется уникальный проект создания «искусственного человека» Homunculus под руководством члена-корреспондента РАН Александра Тоневицкого. Идея проста и от этого еще более гениальна: разместить на пластине площадью с кредитную карточку клетки человека и объединить их системой «сосудов» в подобие живого организма.

Золотая середина. По доступности и релевантности результатов исследования с помощью Homunculus представляются оптимальным компромиссом между испытаниями на людях и тестами на 3D-культурах и животных. Хотя, разумеется, испытания на биореакторе не призваны полностью заменить другие виды тестов.

Идея такого биореактора зародилась сравнительно недавно: в 2007 году появились первые работы немецких ученых во главе с Уве Марксом, в которых высказана идея расположить рядом клетки нескольких типов, чтобы смоделировать их взаимодействие. С тех пор множество лабораторий по всему миру начали по-своему решать эту проблему, однако большинству специалистов удалось создать лишь узкоспециализированные системы. В лаборатории Кае Сато с факультета прикладной биохимии Токийского университета (Япония) изучается взаимодействие раковых клеток опухолей с другими тканями, Дональд Имбер (Институт Вайса, США) создает филигранную модель «легкого на чипе», способную к сокращениям и естественному газообмену.

Идея создания отдельных макетов быстро перерастает в концепцию полноценной живой модели человека, и Уве Маркс с командой ученых из лаборатории TissUse обращается к своему бывшему научному руководителю Александру Тоневицкому, руководителю НТЦ «БиоКлиникум». Так началась история российского проекта «Человек на чипе», который на данный момент располагает единственными в мире рабочими образцами системы.


В лаборатории есть всё необходимое как для прототипирования,
так и для полноценной сборки всех механических и электронных компонентов системы

Технология объединяет в себе достижения самых разных наук, в НТЦ работают микробиологи, химики, физики, программисты и инженеры. «Здесь у нас есть все необходимое: стерильные ПЦР-боксы, печь с плазмой низкого давления, мастерская, оснащенная новейшими инструментами, в том числе 3D-принтером, лазерным гравером и станками с компьютерным управлением», – не без гордости рассказывает наш гид Дмитрий Сахаров, директор проекта Homunculus. В таких условиях группа талантливых молодых ученых создает будущее медицины – маленьких «человечков» на стекле и пластике, которые призваны спасать множество жизней.

Плоть и кровь

Платформа Homunculus состоит из клеточного чипа и блока управления, который отслеживает ход эксперимента и поддерживает жизнь маленького человечка. На чипе размещаются культуры клеток, в первую очередь те, через которые тестируемое вещество будет попадать в организм, а также те, на которые оно должно воздействовать.

СЭНДВИЧ С ТЕХНОЛОГИЯМИ


Дизайн подложки ПДМС последнего поколения

С точки зрения конструкции чип Homunculus выглядит простым, но эта простота кажущаяся. Почти каждый его компонент изготавливается с помощью самых современных технологий, таких как литье под давлением и активация плазмой.

1. В зависимости от задач ячейки могут содержать клетки почки, сердца, мозга, кожи, легких, или в них могут быть установлены оптические или электрохимические сенсоры. 2. Клетки кишечника. 3. Клетки печени. 4. Расширительная камера. 5. Канал для обогащения углекислым газом. 6. Клапаны микронасоса и клапаны резервуаров смены среды

 «Кровь» искусственного человека – питательный раствор, снабжающий клетки всеми необходимыми для жизни соединениями. Через него же вводят тестируемое вещество. Раствор содержит набор солей, поддерживающих постоянную кислотность среды, поскольку клетки выделяют в раствор свои щелочные метаболиты. Также в нем содержится питательный бульон, причем «рацион» четко соблюден – присутствует необходимое количество белков, жиров и доступных сахаров. Состав раствора очень близок к составу плазмы крови, а вот аналогов эритроцитов с гемоглобином там нет – кислород поступает в систему растворенным в жидкости.

Клеточные культуры располагаются в трансвелах – специальных ячейках с полупроницаемой мембраной снизу, сквозь которую клетки обмениваются веществами с питательной средой и друг с другом. Возможно, когда-нибудь ученые смогут разместить на платформе и привести во взаимодействие все (или почти все) виды клеток, содержащихся в человеческом организме. Однако, пока количество клеточных ячеек на чипе не превышает шести, разработчики стремятся сосредоточиться на органах, которые непосредственно соприкасаются с тестируемым лекарством, участвуют в его передаче и выделении.

К примеру, если речь идет о таблетках, действующее вещество помещается в ячейку с клетками кишечника, всасывается ими и через мембрану попадает в питательную среду. Наружные средства вводятся через клетки кожи, а внутривенные – непосредственно в раствор. Непременно тестируются печень и почки, участвующие в метаболизме и выведении препарата. Вниманием не обделены сердце и мозг, особенно чувствительные к токсичным препаратам. Перечень доступных клеток можно расширять постоянно – главное, что в рамках теста клеточные культуры функционируют и взаимодействуют максимально правдоподобным образом.

Тест длится около 28 дней, после чего специалисты приступают к обработке результатов. Самый явный показатель – количество живых клеток к концу эксперимента, но наиболее точные результаты дают микробиологические и генетические исследования РНК и ДНК. Это позволяет определить отсроченную токсичность препарата в том случае, когда он не убивает клетку мгновенно, но вызывает мутации в геноме и нарушения метаболизма. Последствия такого отравления могут быть заметны только спустя несколько лет, и стандартные методы лабораторных испытаний не дают их зафиксировать.

К моменту начала работы особо важным для исследователей был вопрос, какие клетки использовать для культивирования? Эмбриональные? Клетки живых людей? Или что-то иное? Ответ был найден неожиданный – ученые используют раковые линии клеток, полученные из мировых клеточных банков. При чем тут онкология? Раковые клетки дольше живут, лучше растут, а самое главное, они стандартны, широко доступны и детально описаны в многочисленных публикациях, при этом их функции точно такие же, как у здоровых.

Эволюция киборга

Несмотря на кажущуюся завершенность и самостоятельность, миниатюрный человечек не может сам дышать или гонять по своим «венам» питательную жидкость. Для этого необходим блок управления – электронный мозг, сердце и легкие «гомункула». Прибор содержит микронасосы, обеспечивающие циркуляцию питательной среды, и вакуумное управление клапанами, установленными в силиконовой прослойке чипа. Кроме того, он подает в систему углекислый газ и кислород, а также поддерживает постоянную температуру чипа.

Блок управления. Внешний блок управления – это сердце, легкие и вегетативная нервная система «гомункула». Он подает в чип кислород и углекислый газ, следит за его температурой и сообщает исследователям о любых изменениях в параметрах чипа, где бы они ни находились в этот момент. Компактный прибор занимает места не больше, чем системный блок настольного компьютера, и имеет дружелюбный интерфейс, с которым могут работать не только сотрудники «БиоКлиникума», но и любые другие специалисты.

Все параметры могут регулироваться в соответствии с задачами эксперимента. Прибор имеет встроенный сенсорный дисплей и подключается к компьютеру по USB или LAN, а интерфейс программного обеспечения сделан так, чтобы врачи и исследователи из других лабораторий могли легко и быстро овладеть всеми функциями. В общем, это не прибор, созданный для конкретной задачи, а многофункциональная платформа, готовая к выпуску на рынок.

Блок управления, как и чип, – детище центра. «Все используемые компоненты давно известны инженерам во всем мире, но их правильное совмещение и калибровка делают разработку уникальной и инновационной», – говорит Дмитрий Сахаров. Вначале все детали прибора изготавливали вручную, включая печать плат и сборку корпусов, но, когда начались продажи, основные компоненты стали заказывать сборочному предприятию в Санкт-Петербурге, откуда прибор приходит в виде конструктора.


После сборки чипа его каналы сразу же заполняются жидкостью:
тончайшие капилляры должны постоянно смачиваться, в противном случае
впоследствии они не смогут заполниться питательной средой

 «"Человек на чипе" – это лишь первый шаг к цели, но технологии стремительно развиваются, и уже в ближайшее время будет создана более совершенная модель», – делится своим видением академик Тоневицкий. В ближайших планах лаборатории создание чипа, на котором можно разместить десять и более культур клеток одновременно, а не шесть, как сейчас. Так же важно сделать клеточные модели наиболее близкими к реальным структурам в организме человека. Ведь не надо забывать, что сейчас мы имеем дело всего лишь с несколькими тысячами клеток в ячейке, а реальные органы имеют сложное, дифференцированное строение с тканями, непредсказуемо взаимодействующими друг с другом. Наиболее сложна для эксперимента эндокринная система, в которой сотни разных гормонов нацелены на сотни различных мишеней по всему организму.

Ученые «БиоКлиникума» идут по пути совмещения живого с неживым: новая версия чипа, пока находящаяся в разработке, имеет полупроницаемые каналы, по которым циркулирует воздух, – аналог человеческих легких. Кишечник нового маленького человечка будет иметь изгибы, похожие на изгибы реального прототипа, и клетки будут расположены в нужном порядке. В лаборатории уверены в том, что проект будет совершенствоваться до тех пор, пока не удастся смоделировать все системы органов во всем их многообразии.

Этика будущего

Несмотря на то что «человек на чипе» выводит животных и человека из-под удара испытаний лекарств, многие, возможно, задаются вопросом – а не могут ли испытуемые клетки сами испытывать боль, особенно когда речь заходит об экспериментах над нервной системой? К счастью, опасения напрасны, клетки культивируются раздельно и не имеют иннервации. Это лишь комочки живой ткани, объединенные в систему, а не полноценный организм, поэтому говорить о создании искусственной жизни не приходится.

Между тем микробиореактор может не только сократить количество тестов на животных, но и значительно ускорить прогресс как в фармацевтике, так и в медицине. На определенном этапе развития новая технология позволит точно подбирать гормональную терапию и минимизировать риски при подборе лекарств.

«Гомункулус» – полностью российский проект, который получает гранты от Минобрнауки и Минздрава; уже выданы разрешения на испытания новых лекарств, есть и международные контакты. Сейчас «БиоКлиникум» испытывает свои системы в России и Германии, ведь важно доказать правильность работы установки покупателям по всему миру, а не только на отечественном рынке. Когда прибор пройдет все испытания и получит полную сертификацию, его внедрение не заставит себя ждать, и, возможно, совсем скоро мы получим множество спасительных препаратов, созданных благодаря молчаливому «подвигу» множества «человечков» на чипах.

КАК ЛЮДИ ДЕЛАЮТ ЛЮДЕЙ

Сердце биореактора – чип с ячейками для клеток – представляет собой сэндвич из поликарбоната, полидиметилсилоксана (ПДМС) и стекла, соединенных весьма неочевидными высокотехнологичными способами.

1. Силиконовый слой служит кровеносной системой чипа и содержит рисунок из мельчайших каналов глубиной всего 100 мкм. Чтобы изготовить его, в металлическую форму с выпуклым рисунком (те самые 100 мкм) закладывают пластину из поликарбоната. Форма закрывается, в нее вставляются воронки с ПДС, и вся конструкция отправляется в подогреваемую центрифугу, тоже разработанную в центре. Там силикон разогревается до 70 градусов, становится жидким и легко занимает свое место между формой и пластинкой.

2. Получившийся «полуфабрикат» нужно закрыть предметным стеклом, но сделать это непросто. Стекло должно не только плотно закрывать сосуды, но и не оказывать влияния на результаты тестов. Следовательно, клей использовать нельзя. Решили эту задачу путем обработки обеих половинок в плазменной печи. Плазма активирует поверхности силикона и стекла, делает их гидрофильными, а также повышает их способность слипаться. После обработки стекло и силикон соединяют, и сэндвич уже не разделить

3. В «чистой комнате», куда, как правило, не пускают посторонних, покоятся различные культуры клеток в жидком азоте. Для того чтобы из клеточного мороженого они превратились в материал для исследования, их в течение нескольких дней раздельно культивируют. Так как разным типам клеток требуется разное время для дифференциации, то есть разделения по форме, строению и функциям, выращивать их начинают с промежутком до нескольких дней, чтобы к началу эксперимента все были на одной стадии развития.

4. Как только модели органов готовы, их помещают в трансвелы. Чипы распаковывают из стерильных пакетов и заправляют клетками. На протяжении всей сборки чип находится в стерильных условиях, чтобы ни одна посторонняя клетка не попала внутрь. Весь процесс сборки осуществляется в одной лаборатории одним специалистом, что делает разработку еще удобнее в применении.

Как вырастить мозг в пробирке

1.06.2015

Стволовые клетки, отправленные в свободное плавание, сформировали структуры, очень похожие на кору полушарий человеческого мозга.

О том, что происходит внутри мозга, мы можем узнать с помощью функциональной магнитно-резонансной томографии (фМРТ) – она позволяет увидеть активность в тех или иных участках нервной ткани и довольно точно сопоставить эту активность с выполнением той или иной задачи. Но мы не сможем узнать о мозге всё, если не проникнем на клеточный уровень, на уровень нейронов и межнейронных контактов – синапсов, на уровень вспомогательных глиальных клеток, которые не только питают нейроны, но и вмешиваются в проведение нейрохимического сигнала. Причём следует помнить, что нейронных разновидностей существует много. Например, если мы внимательно рассмотрим кору полушарий, мы обнаружим в ней шесть слоёв, отличающихся друг от друга по соотношению нейронов разного типа. Чтобы понять, как на молекулярно-клеточном уровне реализуются высшие когнитивные функции (а именно ими и занимается кора), нам нужно до тонкостей понять устройство и взаимосвязь её слоёв между собой.

Что-то, конечно, можно исследовать на мозгах грызунов и приматов. Кроме того, часто взаимодействие нейронов изучают в клеточной культуре: клетки живут в питательной среде на дне какой-нибудь лабораторной посудины, а нейробиологи следят, как у них, к примеру, меняется сила синапсов в ответ на те или иные раздражители. В результате можно сделать некие выводы о причинах шизофрении, аутизма и других когнитивных нарушений – ведь в случае таких патологий нарушается как раз нейронная архитектура, взаимосвязь нейронов друг с другом. Но плоский слой культуры клеток – всё-таки не кора с её шестью слоями. Другой способ состоит в анализе образцов, взятых у умерших людей. Надо ли говорить, что тут всё время нужно помнить о посмертных изменениях в клеточном устройстве, да и проведение сигнала в таких образцах изучать невозможно. В идеале хотелось бы, чтобы у нас в руках была объёмная клеточная модель, полностью воссоздающая тот или иной элемент структуры мозга, если не весь мозг. Эксперименты исследователей из Стэнфордского университета нас к такому идеалу заметно приближают.

Разумеется, дело не обошлось без стволовых клеток – Серджиу Паска (Sergiu Pasca) и его коллеги получили из человеческой кожи индуцированные стволовые клетки и затем превратили их в нейроны. Сейчас это уже почти стандартная процедура: дифференцированные клетки заставляют «вспомнить молодость», когда они были стволовыми и не умели ничего делать, кроме как делиться. Зато их можно превратить в любой другой клеточный тип, нужно лишь направить их по нужному пути с помощью молекулярных сигналов. Поначалу всё шло как обычно: искусственные стволовые клетки росли плоским слоем в культуральной посуде. Но потом их отделили со дна и пересадили в специальное новое «место жительства», где они уже не могли прочно прикрепиться к стенкам или ко дну. За несколько часов клетки объединились в микрошарики, в которых продолжали делиться. И вот тут-то у них запустили превращение в клетки нервной ткани.

Разрез кортикального сфероида, полученного при 3D-культивировании индуцированных стволовых клеток человека; красным окрашены созревшие нервные клетки, зелёным – делящиеся стволовые предшественники. (Фото The Pasca Lab.)

Как пишут авторы работы в Nature Methods, через семь недель 80% клеток по молекулярным и прочим признакам стали похожи на нервные. Причём 7% превратились не в нейроны, а в глиальные астроциты, которые поддерживают и питают нейроны, защищают их от проникновения вредных веществ из крови, а также регулируют нейронную активность. До сих пор не удавалось вырастить и нейроны, и поддерживающие их клетки из одного стволового материала, приходилось пользоваться сторонними астроцитами, полученными от другой линии стволовых клеток, что означало, что генетически те и другие оказывались различны – тогда как в мозге все клетки несут одинаковые гены. Теперь же, по-видимому, это затруднение исчезнет.

Но самое главное выяснилось, когда проанализировали структуру клеточных комплексов (их назвали кортикальными сфероидами) – оказывается, их архитектура была похожа на ту, которая есть в коре полушарий. Причём 80% нейронов отвечали на внешний стимул, а 86% демонстрировали спонтанную активность и образовывали друг с другом нейронные цепочки, передавая сигнал друг другу. Иными словами, удалось получить довольно правдоподобную трёхмерную модель коры мозга.

В последнее время исследователи всё чаще обращаются к методам 3D-культивирования клеток, поскольку так мы лучше понять то, что происходит в природе. Ведь когда формируется ткань или орган, они растут и развиваются по всем направлениям, клетки, входящие в их состав, чувствуют своих соседей со всех сторон. Именно такой всесторонний контакт необходим для правильного развития, правильной реализации генетических программ, для правильной дифференцировки. Уловки тут используют самые разные: например, сотрудники Университета Райса выращивали лёгочную бронхиолу с помощью магнитной левитации – той самой, с помощью которой перемещаются маглевы, поезда на магнитной подушке.

И это, конечно, не первая работа, в которой пытаются сделать орган или хотя бы его модель «с нуля», со стволового клеточного материала. Однако чаще речь идёт о более простых органах – например, в прошлом году мы писали о «минижелудке», который удалось сделать в Медицинском центре при детской больнице Цинциннати. Что же до мозга, то два года назад в Nature была опубликована статья с описанием так называемого церебрального органоида – в Институте молекулярной биотехнологии Австрийской академии наук из индуцированных стволовых клеток удалось получить трёхмерную структуру, очень похожую мозг 9-недельного зародыша человека. На ней вполне можно изучать ранние процессы развития центральной нервной системы, однако устройство такого протомозга намного проще устройства даже небольшого участка полностью сформированной коры. Однако вышеописанные свежие результаты позволяют надеяться, что скоро у нейробиологов в руках будет настоящий «мозг из пробирки» – ну или хотя бы какая-то его часть.

Автор: Кирилл Стасевич

Источник: nkj.ru

Медики придумали лекарство, помогающее сохранить мускулы в старости

02.06.2015
Канадские медики и биологи выяснили, почему наши мускулы слабеют при наступлении старости, и разработали методику и лекарства для борьбы с этим дряхлением.
 

Международный коллектив медиков выяснил, почему мускулы рук, ног и прочих частей тела дряхлеют при наступлении старости, и нашли способ создать специальный препарат, помогающий сохранить их, говорится в статье, опубликованной в журнале Cell Metabolism.

"Мы обнаружили, что правильная работа "карбюратора" в клетках мускулов, фермента под названием АМФ протеин-киназа, является важным фактором в замедлении старения мускулов. Мыши, у которых мы удалили ген AMPK в клетках мускулов, слабели гораздо быстрее, чем мы ожидали увидеть для грызунов их возраста. В 50 условных лет  они выглядели как столетние старики, ведущие неподвижный образ жизни", — заявил Грегори Штайнберг (Gregory Steinberg) из университета Макмастера в Гамильтоне (Канада).

Данный фермент заинтересовал Штайнберга и его коллег по той причине, что в предыдущих экспериментах они выяснили, что длительные занятия зарядкой "включают" АМФК и заставляют клетки мускулов активнее управлять своим метаболизмом. В свою очередь, постоянные физические упражнения до сегодняшнего дня были единственным известным медикам способом замедлить старение мышц.

Руководствуясь этой идеей, медики решили проверить, что произойдет, если отключить ген, управляющий работой этого белка в клетках мускулов мышей. Как показал эксперимент, мускулы таких грызунов старели заметно быстрее, чем мышцы нормальных мышей, и к тому же они медленнее восстанавливались после эпизодов голода.

Причиной этого, как выяснили ученые, было то, что снижение активности AМФК лишает мускулы способности жертвовать частью клеток ради спасения остальных мышечных волокон, а также то, что данный фермент необходим для нормального метаболизма аминокислот в организме. В юные годы эти негативные эффекты не так заметны, но при наступлении старости они начинают заметно ускорять дряхление мускулов.

"Мы знаем, что мы можем "включать" АМФК при помощи зарядки и ряда лекарств, которые применяются для борьбы с диабетом второго типа. Так как мы теперь знаем, что этот белок важен для поддержания массы мускулов по мере старения тела, эти же препараты и упражнения можно адаптировать и для защиты мускулов от дряхления", — заключает Штайнберг.

http://ria.ru/science/20150602/1067810763.html

Контактные линзы существенно меняют микрофлору глаз

 2.06.2015

Контактные линзы

Ношение контактных линз может изменять бактериальный фон, живущий в ваших глазах, согласно одному из последних исследований. В ходе исследования выяснилось, что поверхность глаз людей, носящих контактные линзы, имела в три раза больше бактериальных видов, в среднем, по сравнению с людьми, которые линзы не носят.

Кроме того, ученые обнаружили различия в составе бактериальных сообществ на поверхностях глаз людей. У людей, которые надевают контактные линзы, этот состав больше включал бактерий, живущих на веках, если сравнивать с теми, кто линзы не носит.

«Наше исследование ясно показывает, что помещение постороннего предмета, например, контактной линзы, на глаз не является нейтральным актом», — говорит автор исследования Мария Глория Домингес-Белло, микробиолог Нью-Йоркского медицинского центра Лангона.

Необходимы дополнительные исследования, которые позволят определить, происходят ли эти изменения в глазных бактериях вследствие прикосновения пальцев к глазам, или же давление контактных линз каким-то образом меняет иммунную систему глаза. Полученные результаты могут пролить свет на старую проблему: почему носители контактных линз более склонны к глазным инфекциям, чем те, кто линз не носит?

С момента появления мягких контактных линз в 1970-х годах, выросло число случаев развития язвы роговицы, проявляющейся на прозрачном покрытии глаза, отмечает соавтор исследования доктор Джек Додик.

Один из видов бактерий, которые могут вызывать язвы роговицы, называется Pseudomonas; он больше распространен у людей, которые носят линзы, выяснилось в ходе исследования. Поскольку эти бактерии могут попадать в глаза через кожу, люди должны следить за гигиеной рук и век, чтобы снизить риск приобретения язвы роговицы, утверждает Додик.

Миллионы людей носят контактные линзы, и хотя у большинства таких людей в глазах живет «другое» сообщество бактерий, они не замечают никаких неудобств. Однако если осложнения появляются, их трудно оставить незамеченными.

Есть простые шаги, которые могут предпринять все носители контактных линз, чтобы предотвратить возможные осложнения от ношения линз. «Мойте руки, меняйте раствор каждый день, содержите футляры для линз в чистоте». Люди, использующие дневные линзы, должны менять их ежедневно, а не носить одни и те же линзы по несколько недель.

Также рекомендуется регулярно посещать офтальмолога, который оценит здоровье глаз. И если линзы вызывают неудобства, также нужно советоваться с врачом.

http://hi-news.ru/research-development/kontaktnye-linzy-sushhestvenno-menyayut-mikrofloru-glaz.html

Обнаружена скрытая связь между мозгом и иммунной системой

Сосуды мозга

Новое открытие позволит ускорить научные исследования мозга. Ученые из университета Вирджинии нашли незаметные сосуды, которые, по их словам, напрямую связывают мозг с иммунной системой. Это открытие может серьезным образом изменить лечение таких неврологических заболеваний, как аутизм, болезнь Альцгеймера и рассеянный склероз. Исследование было опубликовано в журнале Nature.

 

Связь между мозгом и иммунной системой до сих пор оставалась загадкой. Новое исследование показало, что иммунную систему и мозг, как и любую другую ткань в организме, соединяют лимфатические сосуды.

Открытие было сделано в ходе исследования мозговых оболочек мышей – покрывающих мозг мембран. Новый способ закрепления оболочек позволил ученым рассмотреть рисунок сосудов в процессе распределения иммунных клеток. Тест показал, что это лимфатические сосуды.

Связь между мозгом и иммунной системой

Лимфатические сосуды ускользали от взора ученых из-за своей тесной близости к кровеносным сосудам. Так как исследуемую область трудно отобразить на фотографии, лимфососуды практически невозможно было разглядеть стандартными способами.

Научное подтверждение присутствия лимфатических сосудов ведет к серьезной переоценке нашего понимания работы мозга и влияющих на него заболеваний. Исследователи надеются, что их открытие поможет найти более эффективные пути лечения болезни Альцгеймера, при которой в головном мозге накапливается белок. Возможно, это происходит из-за сбоя в работе лимфососудов.

4 Июня 2015

http://hi-news.ru/research-development/obnaruzhena-skrytaya-svyaz-mezhdu-mozgom-i-immunnoj-sistemoj.html

Частичное перепрограммирование восстанавливает молодую экспрессию генов за счет временного подавления идентичности клеток

 Авторы: Antoine Roux, Chunlian Zhang, Jonathan Paw, José Zavala-Solorio, Twaritha Vijay, Ganesh Kolumam, Cynthia Kenyon, Jacob C. Kimmel     Аннотация   Сообщалось, что временная индукция...

Читать далее

Профилирование эпигенетического возраста в отдельных клетках

 Авторы: Александр Трапп, Чаба Керепеси, Вадим Николаевич Гладышев     Аннотация   Метилирование ДНК определенного набора динуклеотидов CpG стало критическим и точным биомаркером процесса старения. Многовариантные модели машинного обучения, известные как...

Читать далее

Эпигенетические часы показывают омоложение во время эмбриогенеза, с последующим старением

      Краткое содержание   Представление о том, что клетки зародышевой линии не стареют, возникло еще  с 19-го века от идей Августа Вейсманна. Однако...

Читать далее

Мультиомиксное омоложение клеток человека путем кратковременного перепрограммирования в фазе созревания

      Краткое содержание   Старение - это постепенное снижение физической формы организма, которое со временем приводит к дисфункции тканей и заболеваниям. На клеточном...

Читать далее

Универсальный возраст по метилированию ДНК в тканях млекопитающих (препринт)

Новые результаты       Старение часто воспринимается как дегенеративный процесс, вызванный случайным накоплением клеточных повреждений с течением времени. Несмотря на это, возраст можно...

Читать далее

Ограниченное омоложение старых гемопоэтических стволовых клеток в молодой нише костного мозга

      Гемопоэтические стволовые клетки (HSC) с возрастом обнаруживают функциональные изменения, такие как снижение регенеративной способности и миелоидно-зависимая дифференцировка. Ниша HSC, которая...

Читать далее

Разведение плазмы улучшает когнитивные функции и снижает нейровоспаление у старых мышей

      Наше недавнее исследование установило, что факторы молодой крови не являются причиной и не являются необходимостью для системного омоложения тканей млекопитающих...

Читать далее

Пора кончать со старой кровью - Джош Миттельдорф

      2020 год обещает нам, что мы сможем сделать наши тела молодыми без явного восстановления молекулярных повреждений, но лишь просто изменив...

Читать далее

Омоложение тканей трех зародышевых листков путем замены плазмы старой крови солевым раствором альбумина

     Аннотация   Гетерохронный обмен крови омолаживает старые ткани, и большинство исследований о том, как это работает, фокусируется на молодой плазме, ее фракциях...

Читать далее

Обращение возраста: измерение эпигенетического возраста двух разных видов с помощью одних часов

   Аннотация   Известно, что молодая плазма крови оказывает благотворное влияние на различные органы у мышей. Однако не было известно, омолаживает ли молодая...

Читать далее

Прорыв в омоложении

  Если вы избегаете громких заявлений и в течении длительного времени соблюдаете дисциплину недосказывания посреди яркого неонового мира, то возможно вы...

Читать далее

Трансплантация ACE2-мезенхимальных стволовых клеток улучшает результат лечения у пациентов с пневмонией, вызванной COVID-19

Озвучить текст роботом: 

    Краткое содержание   Коронавирус (HCoV-19) вызвал новую вспышку коронавирусной болезни (COVID-19) в Ухане, Китай. Профилактика и реверсия...

Читать далее

Диагностика старения на основе 9 признаков «Hallmarks of Aging»

  “Если вы не можете измерить это, вы не можете улучшить его”, — так сказал Уильям Томсон, великий ирландский физик известный...

Читать далее

Паттерны биомаркеров старения, смертности и вредных мутаций проливают свет на начинающееся старение и причины ранней смертности - Гладышев 2019

Основные моменты Смертность от возрастных заболеваний U-образная с надиром ниже репродуктивного возраста Количественные биомаркеры старения постоянно меняются на протяжении всей жизни Бремя мутаций...

Читать далее

Клеточное старение. Определение пути вперед

Клеточное старение - это состояние клетки, вовлеченное в различные физиологические процессы и широкий спектр возрастных заболеваний. В последнее время быстро растет...

Читать далее

Видео: Суть старения и путь к долголетию - Гладышев В.Н.

Лекторий МГУ: Вадим Николаевич Гладышев, 28 мая 2019 г. 17.00Тема лектория: «Суть старения и путь к долголетию». Профессор Факультета биоинженерии и...

Читать далее

Японцы получили разрешение скрестить эмбрион человека и животного

Ученые давно проводят эксперименты по выведению различных гибридных видов животных. Как правило, это относится к лабораторным животным, опыты над которыми...

Читать далее

Мыши смогли восстановить ампутированные пальцы при помощи двух белков

  Возможно, в будущем люди смогут восстанавливать потерянные конечности — на это, во всяком случае, намекают медицинские эксперименты. Ученым уже известно...

Читать далее

Израильские учёные разработали универсальное лечение против рака

    Небольшая группа израильских учёных считает, что они нашли первое универсальное лечение против рака.  «Мы считаем, что через год мы предложим универсальное...

Читать далее

Клинические испытания первой омолаживающей терапии

    Самое первое человеческое испытание сенолитических лекарств, было объявлено ещё в июне, и большая часть мира практически не обратила внимания на него...

Читать далее

Старение внеклеточного матрикса

    Данная статья собрана из нескольких моих ранних заметок о влиянии внеклеточного матрикса на процесс старения. Текст статьи будет обновляться — я планирую...

Читать далее

Обзор достижений в борьбе со старением в 2018 году

   Каким был 2018 год в борьбе со старением? Год начался с хорошей новости. Под давлением общественности, ученых, организаций и сторонников борьбы со...

Читать далее

Таблетка от старости и кровь младенцев: достижения науки о старении в 2018 году

    2018-й принес обнадеживающие результаты в борьбе со старением и стал годом взрывного роста бизнеса на бессмертии. Начались испытания сенолитика — препарата, убивающего стареющие клетки, ключевого...

Читать далее

Китайский ученый заявил о рождении первых в мире генетически модифицированных детей

  Китайский ученый Цзянькуй Хэ заявил о рождении первых в мире детей из генетически отредактированных эмбрионов. По словам ученого, родились близняшки, у которых он попытался создать устойчивость к заражению...

Читать далее

Новая веха в медицине: Создан первый в мире сканер для всего тела

    Исследователи и ученые из Калифорнийского университета в Дейвисе со своими китайскими коллегами из компании United Imaging Healthcare (UIH) создали аппарат...

Читать далее

Первая искусственная роговица, напечатанная на 3D-принтере, уже готова для трансплантации

    Роговица — это крайне важная, но очень хрупкая часть нашего органа зрения. Она очень легко подвержена травмам и различным заболеваниям...

Читать далее

Ученые создают лазерный кожный регенератор из «Стартрека»

     Технологии из научно-фантастической вселенной «Стартрек» продолжают проникать в нашу реальную жизнь. Мы уже читали о медицинском трикодере, слышали о разработках...

Читать далее

Ученые создали универсальные имплантаты, которые не будут отторгаться организмом

  Любые материалы (в том числе и биологические), которые не созданы нашим организмом, в любом случае являются чужеродными и будут отторгаться...

Читать далее

«Получи я миллиард долларов сегодня, мы победили бы старение на 10 лет раньше. Это 400 миллионов жизней»

      Обри де Грей: большое интервью   В Москву на конференцию «Future in the City», которая пройдет 18 и 19 июля в башне «Империя» в Москва-Сити...

Читать далее

Генетик из Гарварда создал стартап по омоложению собак

В дальнейшем ученый намерен распространить исследования на людей.     Генетик, молекулярный инженер и химик Джордж Черч из Гарварда основал стартап Rejuvenate Bio...

Читать далее

Как наука приближает бессмертие к реальности?

    Поиски Понсе де Леоном фонтана вечной молодости могут быть легендой, но основная идея — поиск лекарства от старости — вполне реальна. Люди...

Читать далее

Секрет вечной жизни точно скрывается в наших клетках

    Однажды могущественный шумерский король по имени Гильгамеш отправился на происки, как это часто делают персонажи мифов и легенд. Гильгамеш стал...

Читать далее

Геронтологи готовы к прорыву

Остановись, старенье!   Ведущие ученые из 17 стран приехали в Россию, чтобы решить проблему старения. Именно теперь, по их мнению, накоплен критический...

Читать далее

Моя улучшенная версия: как жить вечно

      Джордж Чёрч [George Church] возвышается над большинством людей. У него длинная серая борода волшебника Средиземья, а работа всей его жизни...

Читать далее

Клеточная терапия без клеток: омоложение внеклеточными везикулами

  Восстановление сердечной мышцы после месяца терапии внеклеточными везикулами. Иммунные метки: агглютинин (красный), тропонин (зеленый) и DAPI (голубой)   Исследователи Колумбийского университета, работающие...

Читать далее

Биологи впервые собрали мышиный «эмбрион» прямо из стволовых клеток

  Бластоциста состоит из внешнего слоя клеток, из которого развивается плацента, и внутреннего – будущего детёныша. Здесь и ниже иллюстрации Nicolas...

Читать далее

Способ борьбы со старением: обращение вспять процесса снижения концентрации НАД+

    Старение сопровождается развитием метаболических нарушений и дряхлением. Недавние исследования продемонстрировали, что снижение уровня никотинамидадениндинуклеотида (НАД+) – ключевой фактор замедления обменных процессов, связанного...

Читать далее

Лекарства от старения, и Где они обитают

Время напрямую людей не убивает, старение – это биологический процесс. Есть группа заболеваний, которые называют возраст-ассоциированными, или старческими. Основным фактором риска...

Читать далее

Создан микроскоп, позволяющий наблюдать за движением клеток внутри организма

Ученые из Медицинского института Говарда Хьюза усовершенствовали метод флюоресцентной микроскопии таким образом, что теперь с ее помощью можно снимать в...

Читать далее

Ученые имплантировали маленький человеческий мозг мыши

Имплантация органов и тканей – вещь в науке далеко не новая. Не первый день существуют и так называемые кортикальные наборы...

Читать далее

В человеческих клетках впервые обнаружена новая форма ДНК

Ученые из австралийского Института медицинских исследований Гарвана сообщили об открытии в клетках человеческого организма необычных структур ДНК – i-мотивов (intercalated-motif...

Читать далее

Нанонож лишнего не отрежет: хирурги тестируют точечную терапию рака

Самое распространенное среди мужчин онкологическое заболевание, рак простаты, которым страдает примерно четверть пациентов урологических стационаров, до недавнего времени лечили хирургически — удаляли...

Читать далее

В США впервые в мире провели комплексную пересадку пениса и мошонки

Врачам из больницы Джона Хопкинса (штат Мэриленд) удалось провести успешную комплексную трансплантацию пениса и мошонки. Операция длилась 14 часов, в...

Читать далее

Антиоксидант MitoQ омолаживает сосуды

Результаты, полученные исследователями университета Колорадо в Боулдере, работающими под руководством профессора Дага Силса (Doug Seals), еще раз подтвердили, что применение...

Читать далее

Эпидемия молодости: как прожить 120 лет и стать счастливым

    Около 5% нынешних молодых и богатых проживут 120 лет и дольше, считают биохакеры. Читайте, что для этого нужно делать. Осенью 2017...

Читать далее

Имплантация пигментного слоя сетчатки помогла сохранить зрение

    Борьба с заболеваниями, которые в той или иной степени угрожают жизни человека – одно из самых приоритетных направлений современной медицины...

Читать далее

В США протестировали мозговой имплантат для улучшения памяти

    Американские исследователи провели проверку имплантата-электростимулятора, призванного усилить память. В среднем способность к запоминанию слов удалось улучшить на 15%. Если технология пройдет...

Читать далее

Ученым впервые удалось воссоздать легочную ткань

    Лечение стволовыми клетками находит все большее применение в медицинской практике. Так, например, группа китайских ученых из Университета Тунцзи не так...

Читать далее

Ученые МИЭТа планируют начать серийное производство аппарата вспомогательного кровообращения для детей уже в этом году

    В 2012 году благодаря ученым нашего университета была осуществлена первая в России успешная операция по имплантации «искусственного сердца» человеку. К...

Читать далее

Первый шаг к тканеинженерным надпочечникам

    Исследователи лондонского университета королевы Марии, работающие под руководством доктора Леонардо Гуасти (Leonardo Guasti), использовали репрограммированные клетки для создания первого прототипа...

Читать далее
Image

Оцифровка пользователя, Моделирование, 3D-визуализация.

Создание подробной цифровой копии на основе данных из медкарты.

Анализ данных. Исправление показателей организма.

Image

Взаимодействие цифровых профилей с целью улучшения показателей.

Обмен знаниями, проведение общих исследований.

Загрузка личного аватара в 3D мир. Игрификация, соревнования.

Image

В разработке

  • Официальная страница о медицинских чат-ботах на сайте Сверхчеловечество.рф
  • Подробности разработки чат-бота для проекта "Карта управления возрастом" (для партнеров и разработчиков) здесь:
Image

Обзор мировых разработок по хранению данных в разработке

Хранилище данных для Электронной Медицинской Карты Управления Возрастом в разработке

Материалы по теме:

Image

Основное взаимодействие планируется производить посредством Социальной сети:

Также существует множество специализированных телемедицинских сервисов:

Image

Данный раздел находится в разработке и будет доступен после запуска Электронной медицинской Карты Управления Возрастом:

Image

Основной материал сайта по теме искусственного интеллекта в медицине здесь:

На основе данной статьи будет определяться разработчик искусственного интеллекта для данной системы управления возрастом.

Image

ВАШ ЛИЧНЫЙ ВКЛАД В БОРЬБУ СО СТАРЕНИЕМ

Скооперируйтесь с тысячами других участников и создайте любой проект в области антистарения, проведите научные исспедования

Площадка для создания и финансирования проектов. Официальная страница сайта Сверхчеловечество.рф для сбора средств на ускорение прогресса в области омоложения:

Image
Image

Основная страница сайта Сверхчеловечество.рф о создании и участии в клинических испытаниях терапий антистарения и отката возраста организма здесь: