Атеросклероз и теломеры

Атеросклероз и теломеры

По статистике ВОЗ сердечно-сосудистые заболевания ежегодно приводят к смерти 17,5 миллионов человек и занимают первое место среди причин смертности во всем мире. Стратегии профилактики, основанные на прогнозировании риска развития этих заболеваний, в настоящее время являются приоритетом для здравоохранения. При этом важное значение имеет разработка новых биомаркеров, обеспечивающих более точное прогнозирование, чем традиционные факторы риска, такие как высокий уровень холестерина в крови, курение, отсутствие физической активности и высокое артериальное давление. Одним из перспективных биомаркеров является длина теломер, однако результаты исследования, проведенного учеными Испанского национального центра сердечно-сосудистых исследований под руководством докторов Валентина Фустера (Valentín Fuster) и Виценте Андреса (Vicente Andrés), свидетельствуют о том, что длина теломер циркулирующих в крови лейкоцитов не позволяет эффективно прогнозировать риск развития сердечно-сосудистых заболеваний у пациентов, не имеющих соответствующих симптомов.

Теломеры представляют собой сложные структуры, локализующиеся на концевых участках хромосом. Их функция заключается в поддержании стабильности генома и жизнеспособности клетки. Многочисленные исследования продемонстрировали, что ДНК теломер прогрессивно укорачивается с возрастом, что приводит к дестабилизации генома и, в конечном итоге, к гибели клетки, наступающей при достижении ими критической длины. Укорочение теломерной ДНК рассматривается как маркер не только старения, но и общего состояния здоровья человека, что вызвало интерес к возможности использования длины теломер циркулирующих в крови лейкоцитов в качестве прогностического фактора для риска развития сердечно-сосудистых заболеваний. Эту идею подкрепляют результаты эпидемиологических исследований, согласно которым пациенты с ишемической болезнью сердца, инфарктом миокарда и инсультом имеют короткие теломеры. Однако имеющиеся на сегодняшний день данные неубедительны.

Примерно половина пациентов с сердечно-сосудистыми заболеваниями не входят в группу высокого риска на основании перечисленных выше традиционных прогностических факторов. В то же время у многих людей с высокими значениями этих факторов риска болезни сердца вообще не развиваются. Поэтому существует четкая потребность в новых биомаркерах, позволяющих выявлять людей, не имеющих симптомов заболевания, но имеющих высокий риск развития атеросклероза и, впоследствии, инфаркта миокарда и инсульта.

В новое исследование было включено 159 добровольцев, принявших участие в клиническом исследовании PESA (от англ. Progression of Early Subclinical Atherosclerosis – прогрессия раннего субклинического атеросклероза). В рамках исследования авторы проанализировали возможную взаимосвязь между средним значением длины теломер циркулирующих лейкоцитов, а также долей критически коротких теломер и присутствием проявлений субклинического атеросклероза (до появления симптомов заболевания) различных сосудов. Для этого они провели двух- и трехмерное ультразвуковое обследование каротидной и подвздошно-бедренной артерий и брюшной аорты, а также компьютерную томографию для количественной оценки степени кальцификации коронарных артерий.

В соответствии с результатами более ранних работ новые данные продемонстрировали существование ассоциации между более старшим возрастом и меньшим значением средней длины теломер лейкоцитов, а также более значимой долей коротких теломер (меньше 3 килобаз или 3 тысяч нуклеотидных оснований). Однако при этом не было выявлено никаких ассоциаций между этими параметрами и присутствием или выраженностью субклинического атеросклероза у участников исследования.

В то же время авторы отмечают, что, несмотря на отсутствие таких ассоциаций, полученные результаты следует интерпретировать с большой осторожностью. Они дают информацию лишь о конкретном моменте в жизни человека и ученым еще предстоит определить, зависит ли скорость прогрессии атеросклероза от исходной длины теломер лейкоцитов или от доли коротких теломер, а также от скорости укорочения теломер в процессе старения. Исследователи планируют получить ответы на эти вопросы в процессе запланированного дальнейшего наблюдения за участниками исследования.

6.06.2016 Источники:

Статья Juan M. Fernández-Alvira et al. Short Telomere Load, Telomere Length, and Subclinical Atherosclerosis http://content.onlinejacc.org/article.aspx?articleid=2524692&resultClick=24 опубликована в The Journal of the American College of Cardiology.

Евгения Рябцева
Портал «Вечная молодость» http://vechnayamolodost.ru по материалам Centro Nacional de Investigaciones Cardiovasculares Carlos III: JACC: Telomere length in circulating blood cells does not predict asymptomatic atherosclerosis.

Найдено лекарство от рака глаза и не толькко

лекарство от рака глаза

 

Исследователи из Университета Юты разработали новый метод лечения видов злокачественных опухолей, тяжело поддающихся терапии, как, например, ретинобластома, или рак глаза. Созданный препарат блокирует белок, способствующий росту и распространению раковых заболеваний. Статья опубликована в журнале Cancer Cell.

Развитие ретинобластомы связано с мутацией в гене Gαq, кодирующем белок ARF6. Это соединение играет роль в распространении биохимических сигналов, провоцирующих рост опухоли. Ученые нашли способ, как обезвредить мутацию Gαq, которая долгое время являлась трудной целью для противораковых препаратов.

В здоровых клетках ARF6 выполняют функцию передачи сигналов для регуляции передвижения внутри клетки везикул — пузырьков, в которых содержатся питательные вещества. Кроме того, белок играет роль в ремоделировании мембраны клеток и актина — другого белка, что образует цитоскелет клеток. Мутация в гене, кодирующем ARF6, изменяет белок, заставляя его передавать сигналы, способствующие возникновению рака.

 

лекарство от рака глаза 

 

Ученые считают, что блокирование функций ARF6 поможет лечить не только ретинобластому, но и другие виды злокачественных опухолей, например, рак кожи, молочной железы, головного мозга или почек. Испытание разработанного препарата на лабораторных мышах, склонных заболевать раком глаза, показало, что лечение предотвращает появление опухолей у животных в шести случаях из 11. Те злокачественные образования, которые все-таки развились, были значительно меньше, чем у контрольных мышей.

Ретинобластома представляет собой опухоль сетчатки глаза, развивающуюся чаще всего в детском возрасте, и в большинстве случаев передается генетически.

3.06.2016 Источник: lenta.ru

Новая система CRISPR сможет «глушить» гены на уровне РНК

Структура комплекса нуклеазы Cas9 с направляющей РНК 

Структура комплекса нуклеазы Cas9 с направляющей РНК

Международная группа ученых из России и США обнаружила фермент, который способен специфически уничтожать нужную РНК с помощью РНК-гида. Нуклеаза входит в одну из разновидностей системы CRISPR, однако, в отличие от широко известных CRISPR/Cas9, действует на уровне РНК, а не ДНК, что избавляет весь метод от риска дестабилизации генома из-за внесения «неправильных» разрывов. Работа пока не прошла рецензирование и доступна в виде препринта в базе bioarXiv.org

Созданная в 2012 году система редактирования генома CRISPR/Cas9 основана на системе бактериального противовирусного иммунитета. Такой иммунитет позволяет бактериям находить фрагменты ДНК вируса в своей «картотеке» CRISPR (она расположена в определенном участке генома бактерии), и уничтожать вирусную ДНК с помощью специальной нуклеазы.

У разных бактерий и архей существует несколько типов системы CRISPR и несколько нуклеаз, однако для целей редактирования генома в биоинженерии почти всегда используется нуклеаза Cas9 (это отражено в названии метода). Главное преимущество именно этой нуклеазы в том, что Cas9 работает самостоятельно (это один белок), в то время как большинство остальных нуклеаз CRISPR работают в комплексе из нескольких ферментов, а использовать мультисубъединичные комплексы для редактирования генома неудобно и часто неэффективно.

У системы CRISPR/Cas9 есть три ключевых недостатка. Во-первых, нуклеаза Cas9 — довольно большой белок, ген которого часто не «влезает» в те носители (векторы), что используются для введения генетических конструкций в клетках.

Во-вторых, Cas9 действует только на ДНК, а не РНК. Это нельзя назвать недостатком если мы действительно хотим редактировать геном клетки, то есть менять ее ДНК. Однако часто нужного результата можно добиться просто «выключив» активность нужного гена на уровне РНК — просто уничтожив все сделанные с этого гена копии. Такое вмешательство, известное по примеру РНК интерференции, потенциально более безопасно, так как не вносит нестабильности в геном. Например, если даже нуклеаза ошибается в выборе мишени, это никак не ведет к появлению мутаций в геноме. Такой метод потенциально может быть ближе к терапевтическому применению, чем настоящее редактирование генома с помощью CRISPR/Cas9.

В-третьих, сейчас метод редактирования генома CRISPR/Cas9 является предметом патентного спора, что может существенно отложить его приход в клиническую практику. Все эти причины требуют поиска новых нуклеаз, которые можно было бы использовать для регуляции активности генов.

Ранее этой же группе исследователей удалось создать биоинформатическую систему поиска новых видов иммунитета CRISPR в геномных данных бактерий и найти новый класс систем CRISPR, том числе гипотетическую нуклеазу С2с2. Это небольшой белок, который, как показывал анализ последовательности, скорее всего действует не на ДНК, а на РНК.

В новой работе ученым удалось подтвердить эти предположения и опробовать новую систему CRISPR/C2c2 в действии. Для этого авторы перенесли последовательности CRISPR, C2c2 и других компонентов системы из лептотрихии (Leptotrichia shahii), в геноме которой ее обнаружили, в геном кишечной палочки. Затем ученые заражали бактерий РНК-вирусом MS2 и смотрели на выжившие клетки. Таким образом удалось обнаружить фрагменты вируса, которые наиболее всего уязвимы для действия CRISPR/C2c2 и определить субстратные предпочтения фермента C2c2. 

В качестве теста биоинженерных свойств системы CRISPR/C2c2 авторы научились выключать красное свечение бактерий за счет уничтожения РНК предварительно введенного в клетки гена красного флюоресцентного белка. По словам ученых, эффективность выключения составила от 20 до 92 процентов, в зависимости от выбранной мишени на РНК флюоресцентного белка. 

Такая эффективность сравнима с эффективностью РНК-интерференции, которая работает сходным образом, но за счет других  молекулярно-биологических механизмов. У РНК-интерференции при этом есть собственные недостатки. Например, короткие РНК, которые вводятся в клетки для выключения генов, очень быстро уничтожаются неспецифичными РНКазами и часто не могут проникнуть в клетку, из-за чего терапевтическая эффективность существенно снижается.

23.05.2016 Источник: Александр Ершов nplus1.ru

У придатков матки обнаружили микробиом

Матка с придатками

Матка с придатками

Американские ученые обнаружили, что в придатках матки — яичниках и фаллопиевых трубах — присутствует постоянная микробиота. Ранее верхние отделы женской репродуктивной системы считались стерильными. Предварительные результаты работы представлены на Ежегодном слете Американского общества клинической онкологии в Чикаго и опубликован в сборнике тезисов мероприятия.

Сотрудники Университетов Северной Каролины в Чапел-Хилле и Пенсильвании провели микробиологический скрининг тканей фаллопиевых труб и яичников, удаленных у 25 женщин по медицинским показаниям (доброкачественные и злокачественные новообразования). В исследование не включали пациенток, принимавших антибиотики в течение трех месяцев перед операцией, а также страдавших раком шейки или тела матки.

Скрининг проводили, экстрагируя и секвенируя высококонсервативные последовательности участка V1-V2 16S-субъединицы бактериальных рибосом, получив в среднем около 70 тысяч прочтений на каждый образец. Плученные данные обработали многофакторным анализом.

Выяснилось, что все отделы придатков матки обладают собственным разнообразным микробиомом, причем его состав различается в проксимальном отделе и бахромке фаллопиевых труб, и оба они отличаются от микробиоты поверхности яичников.

Также выяснилось, что у пациенток с эпителиальным раком яичника имеются незначительные, но характерные отличия бактериального состава по сравнению с женщинами, не страдавшими злокачественными новообразованиями. По словам ученых, при онкологическом заболевании обнаруженная микробиота была более патогенной.

Выяснить, влияет ли микробиом придатков матки на развитие злокачественных новообразований, предстоит в последующих исследованиях. Если такая связь обнаружится, она откроет путь к разработке новых методов скрининга и, возможно, профилактики и лечения опухолей женской репродуктивной системы.

06.062016 Источник: Олег Лищук nplus1.ru

Как стареет человеческий организм

Долго жить не запретишь

Старение

Почему люди начинают стареть в 20–25 лет, в каком возрасте организм теряет способность справляться с новыми заболеваниями, а также какие успехи ученые сделали в борьбе со старостью, рассказывает отдел науки «Газеты.Ru».

Старость не за горами

С возрастом признаки старости проявляются все сильнее: кости становятся более хрупкими, уменьшается тонус мышц, появляется седина, эффективность работы сердечно-сосудистой системы снижается, в иммунной системе хуже вырабатываются антитела, болезни «прилипают» чаще, а вылечить их сложнее, наблюдаются расстройства памяти и нарушается деятельность нервной системы.

При этом единой теории появления причин и следствий старости сегодня нет. Более того, старость вообще не считается болезнью.

Точно известно, что старение очень тесно связано с развитием дозрелого состояния (состояние организма до достижения репродуктивного возраста). Если представитель определенного вида растет и развивается быстро, то и продолжительность его жизни будет невелика. Если понять, как именно регулируется скорость развития организма, то появится возможность повлиять и на процессы старения, полагают ученые. Например, человек может дожить до 100 лет, а возраст макаки ограничен 30 годами, хотя «всего» 30 млн лет назад люди и макаки были одним видом. В чем кроется причина таких глобальных различий в продолжительности жизни разных видов, ученым до сих пор неясно.

Вообще же старение — это процесс, обусловленный многими факторами, действие которых накапливается в течение всей жизни и приводит к повышенной уязвимости организма. Ученым не всегда удается однозначно проследить причинно-следственную связь «старость – болезнь» или «болезнь – старость», но в одном они сходятся наверняка: бороться со старостью нужно по всем фронтам. Какие же фронты выделяют ученые?

«Фабрика лейкоцитов»

Организм начинает стареть в 20–25 лет. В этом возрасте мы начинаем чаще болеть, а лечиться становится сложнее. Все дело в том, что препятствием на пути болезней в организме является иммунитет, чья главная функция — распознавание и уничтожение «чужих» клеток среди «своих». Клетки иммунитета — лимфоциты — попадают из костного мозга в вилочковую железу организма, которую также называют тимусом (в переводе с греческого — «жизненная сила»). Эти клетки умеют бороться с инфекционными микроорганизмами, вирусами и другими чужеродными элементами. Они в большом количестве регулярно попадают в кровь и «патрулируют» кровеносные магистрали.

Проблема заключается в том, что вилочковая железа развивается лишь до периода полового созревания, то есть примерно до 20 лет, после чего наступает процесс ее деградации.

Лимфоцитов образуется все меньше, уровень защиты организма сильно снижается. К 40 годам организм еще может бороться с известными ему заболеваниями, но против новых, впервые возникших болезней он становится практически бессилен. Поэтому с возрастом люди и начинают болеть чаще.

Увядание тимуса — это запрограммированный эволюцией процесс или результат накопления ошибок? Скорее первое, чем второе. Но ученые все равно работают над этой проблемой. Например, было показано, что изменение всего лишь одного гена у круглого червя-нематоды C. еlegans приводит к увеличению продолжительности его жизни в два раза. Человек имеет намного более сложную организацию, чем червь, но это все равно можно считать маленькой победой.

Делиться или не делиться?

Человек состоит из органов, органы состоят из тканей, а ткани — из триллионов клеток. Соответственно, старение человека — это старение его клеток, а точнее, их информационно-наследственной системы, хранящейся в ядрах. По сути, клетки — это «кощеево яйцо» нашего организма.

Представьте, что каждая клетка — это маленький кубик, а человек — самособирающийся конструктор. Конструктор этот настолько сложный, что внутри каждого кубика есть инструкция к сборке (ее роль выполняет наследственная информация клетки — ДНК), а каждая деталь сама знает, где ее место, и двигается к нему мелкими шагами. Реализация наследственной информации и движение клетки в нужном направлении осуществляется благодаря внутренним молекулярным машинам, работающим, к сожалению, вовсе не с безупречной точностью.

И даже наличие репаративных машин-механиков, направленных на исправления огрехов машин-сборщиков, не может гарантировать, что наследственная инструкция будет выполнена без искажений.

Тому есть множество причин. Когда приходит время, клетка делится на две идентичных себе части. Этому предшествует удвоение всех внутренних составляющих клетки, чтобы каждой дочерней клетке достался такой же полный набор. Самое сложное в этом процессе — сделать точную копию инструкции к последующей сборке.

Молекулярная машина, называемая ДНК-полимеразой и копирующая наследственную информацию, ошибается с частотой один раз на миллион прочтенных ею нуклеотидов. Великолепная точность, как может показаться. Но нуклеотидов в одном гене примерно 104, число генов в геноме 3*104, а общее количество клеток, которым нужно поделиться в человеческом теле, — 1013. Получается, что в сумме ошибок допускается немало и со временем они копятся в геноме. Чем чаще клетка делится, тем больше накапливается ошибок. Таким образом, клетка всегда как бы стоит перед выбором: либо часто делиться, увеличивая тем самым риски мутаций, либо снизить свою активность и делиться реже, сократив тем самым скорость роста популяции клеток, что может быть критично, если клетки обитают в агрессивной среде. Вторую стратегию выбирают нейроны, которые практически не способны к делению. Стволовые клетки человека тоже стараются делиться как можно меньше, чтобы случайно не вызвать мутацию.

Но не все клетки могут себе позволить статичное существование, ведь если они не будут делиться, то в организме попросту будет некому работать.

Выходит, время работает против нас. Чем старше человек, тем больше мутаций его в клетках, а когда их становится слишком много, клетка перестает делиться совсем и умирает — уходит в состояние апоптоза. Попытки усилить репарационный аппарат клеток могут принести победу на этом поле боя. А вот искусственная отмена апоптоза — идея противоречивая. Предпринять это можно, сделав клетки бессмертными, но бесконечная жизнь с набором всевозможных болезней, вызванных мутациями, — это не то, о чем мечтают люди.

Предел деления

В 1961 году профессор анатомии Калифорнийского университета Леонард Хейфлик установил, что человеческие клетки кожи в лабораторных условиях имеют предел деления — не более 50 раз, после чего их ждет смерть. Феномен получил название «предел Хейфлика», но причина такого поведения клетки стала ясна позже.

При каждом делении клетки концевые участки наследственной «инструкции» (ДНК), называемые теломерами, не могут быть скопированы полностью, что связано со спецификой механизма копирования. Следовательно, при каждом клеточном делении концы теломеров немного укорачиваются. В какой-то момент «края» ДНК укорачиваются настолько, что клетка уже не может делиться совсем. Именно в этом, согласно теломерной теории, и заключается суть процесса старения клеток.

Эту теорию одновременно разработали американские ученые Элизабет Блэкберн, Кэрол Грейдер, Джек Шостак и советский ученый Алексей Оловников. Позже выяснилось, что специальный фермент — теломераза — может защищать концы хромосом от недорепликации и стабилизировать их. В 2009 году за это открытие была вручена Нобелевская премия по медицине.

Сначала научное сообщество поверило в открытие ключа к продлению жизни, и теломераза стала кандидатом на титул своего рода философского камня.

Но тут на исследовательский ринг снова вышли российские ученые, которые в экспериментах на мышах показали, что увеличение количества теломеразы не приводит к существенному увеличению продолжительности жизни. Все мыши — как дикие (с короткими теломерами), так и лабораторные (с длинными теломерами) — живут примерно одинаковый срок. И сейчас ситуация на этом фронте пока без перемен, а ученые пока не понимают, влияет ли как-то удлинение теломер на старение организма или нет.

Соседская дружба

Между клетками есть сцепления, которые называются мембранными белками. Благодаря этим сцеплениям клетки знают все о своих «соседях», получают сигналы от них, а их соединения не разваливаются. Но сцепления со временем ослабевают, клетки перестают держаться вместе и не могут узнать, что происходит с их «соседями». Они становятся одиночками, теряют все связи с внешним миром, и «конструктор» рассыпается.

Если представить клетку организма в виде комнаты, то мембранный белок будет ручкой от входной двери. При этом часть ручки находится снаружи комнаты и проникает в соседнее помещение, а часть расположена внутри комнаты. Стоит «соседу» потянуть за ручку, как дверь открывается, и тогда в комнату-клетку можно зайти.

Именно так в клетку попадают большие и малые биомолекулы, которые, передавая информацию, запускают или останавливают, ускоряют или замедляют жизненно важные процессы.

Но если ручка ломается, то в комнату ничего не может попасть, и информация — например, от органов чувств — может остаться на пороге поврежденных клеток, не дойдя до мозга для обработки. Так нарушаются сигнальные пути в клетках, что приводит к нейродегенеративным заболеваниям — еще одному спутнику старения.

Продолжительность жизни vs качество жизни

Мы все стареем и рано или поздно умрем — такова беспощадная природа человека. Но каждому из нас хочется прожить подольше, причем продлить тот период жизни, когда организм здоров, активен и крепок. Поэтому силы ученых брошены не на увеличение продолжительности жизни (lifespan), а на продление активного периода жизни — healthspan.

Долгий healthspan гарантирован, если уменьшить вероятность заболевания или увеличить вероятность выздоровления. В любом из этих сценариев нужно минимизировать возраст-зависимые заболевания. Сейчас исследователи уделяют особое внимание таким болезням, как рак, катаракта, диабет второго типа, сердечно-сосудистые заболевания, болезнь Альцгеймера и т.д. В России вопросами здорового долголетия на разных уровнях занимаются во многих исследовательских институтах и центрах. Одним из таких является недавно созданный в МФТИ «Центр исследований молекулярных механизмов старения и возрастных заболеваний», в котором патологии исследуются на уровне мембранных белков. В частности, этим занимается Лаборатория перспективных исследований мембранных белков совместно с зарубежными коллегами.

Долгое время считалось, что причина болезни — амилоидные бляшки. В мозге человека с возрастом в излишнем количестве может накапливаться вещество — мономер бета-амилоид. Это побочный продукт неправильного распада мембранного белка, отвечающего за рост и созревание нервных клеток. Отложения бета-амилоидов называют бляшками. Бляшки, облепляя клетку, приводят к запуску механизмов апоптоза.

Все самое страшное, однако, происходит внутри клетки, на ее энергетических станциях.

Бета-амилоид с мембраны клетки попадает внутрь, крепится на мембране митохондрий и тем самым сбивает все энергетические и сигнальные процессы клетки, только после этого поврежденная клетка уходит в апоптоз. Гибель нейронов, которые практически не восстанавливаются, пагубно сказывается на всех процессах мозга, нарушаются нейронные связи, человек перестает что-то помнить и не способен учиться новому. Сейчас ученые работают над тем, чтобы предотвратить попадание бета-амилоида в митохондрию.

В изучении процессов старости ученые также делают успехи. Так, совсем недавно исследователи выяснили, что клетки разных органов тела стареют с разной скоростью, например печень стареет быстрее головного мозга. Объясняется это тем, что клетки разных органов обладают неодинаковыми свойствами: так, клетки печени обновляются достаточно часто и накапливают мутации. В то же время большая часть нейронов головного мозга «живет» в нем от рождения организма до его смерти, а это значит, что нейроны должны обладать «врожденной» способностью противостоять времени.

Еще одна группа ученых благодаря изучению теломеров выяснила, что организм некоторых людей стареет с утроенной скоростью, «преодолевая» три года за 12 месяцев (это значит, что биологический возраст их органов и тканей превышает фактический возраст в три раза). Есть, однако, и такие люди, которые стареют медленнее, их биологические часы отмеряют год за 16,5 календарного месяца. В ходе 12-летней работы ученые пришли к выводу: генетика отвечает за скорость старения организма лишь на 20%, остальные 80% — это вклад нашего образа жизни (занятия спортом, питание, экология и так далее).

Несмотря на все успехи ученых, говорить о победе над старостью еще очень рано. Тем не менее уже сделанные открытия дают надежду, что когда-нибудь «лекарство от старости» — или хотя бы замедляющее старость — все-таки будет создано.

 31.05.2016 Источник: Дарья Степаненко gazeta.ru

Частичное перепрограммирование восстанавливает молодую экспрессию генов за счет временного подавления идентичности клеток

 Авторы: Antoine Roux, Chunlian Zhang, Jonathan Paw, José Zavala-Solorio, Twaritha Vijay, Ganesh Kolumam, Cynthia Kenyon, Jacob C. Kimmel     Аннотация   Сообщалось, что временная индукция...

Читать далее

Профилирование эпигенетического возраста в отдельных клетках

 Авторы: Александр Трапп, Чаба Керепеси, Вадим Николаевич Гладышев     Аннотация   Метилирование ДНК определенного набора динуклеотидов CpG стало критическим и точным биомаркером процесса старения. Многовариантные модели машинного обучения, известные как...

Читать далее

Эпигенетические часы показывают омоложение во время эмбриогенеза, с последующим старением

      Краткое содержание   Представление о том, что клетки зародышевой линии не стареют, возникло еще  с 19-го века от идей Августа Вейсманна. Однако...

Читать далее

Мультиомиксное омоложение клеток человека путем кратковременного перепрограммирования в фазе созревания

      Краткое содержание   Старение - это постепенное снижение физической формы организма, которое со временем приводит к дисфункции тканей и заболеваниям. На клеточном...

Читать далее

Универсальный возраст по метилированию ДНК в тканях млекопитающих (препринт)

Новые результаты       Старение часто воспринимается как дегенеративный процесс, вызванный случайным накоплением клеточных повреждений с течением времени. Несмотря на это, возраст можно...

Читать далее

Ограниченное омоложение старых гемопоэтических стволовых клеток в молодой нише костного мозга

      Гемопоэтические стволовые клетки (HSC) с возрастом обнаруживают функциональные изменения, такие как снижение регенеративной способности и миелоидно-зависимая дифференцировка. Ниша HSC, которая...

Читать далее

Разведение плазмы улучшает когнитивные функции и снижает нейровоспаление у старых мышей

      Наше недавнее исследование установило, что факторы молодой крови не являются причиной и не являются необходимостью для системного омоложения тканей млекопитающих...

Читать далее

Пора кончать со старой кровью - Джош Миттельдорф

      2020 год обещает нам, что мы сможем сделать наши тела молодыми без явного восстановления молекулярных повреждений, но лишь просто изменив...

Читать далее

Омоложение тканей трех зародышевых листков путем замены плазмы старой крови солевым раствором альбумина

     Аннотация   Гетерохронный обмен крови омолаживает старые ткани, и большинство исследований о том, как это работает, фокусируется на молодой плазме, ее фракциях...

Читать далее

Обращение возраста: измерение эпигенетического возраста двух разных видов с помощью одних часов

   Аннотация   Известно, что молодая плазма крови оказывает благотворное влияние на различные органы у мышей. Однако не было известно, омолаживает ли молодая...

Читать далее

Прорыв в омоложении

  Если вы избегаете громких заявлений и в течении длительного времени соблюдаете дисциплину недосказывания посреди яркого неонового мира, то возможно вы...

Читать далее

Трансплантация ACE2-мезенхимальных стволовых клеток улучшает результат лечения у пациентов с пневмонией, вызванной COVID-19

Озвучить текст роботом: 

    Краткое содержание   Коронавирус (HCoV-19) вызвал новую вспышку коронавирусной болезни (COVID-19) в Ухане, Китай. Профилактика и реверсия...

Читать далее

Диагностика старения на основе 9 признаков «Hallmarks of Aging»

  “Если вы не можете измерить это, вы не можете улучшить его”, — так сказал Уильям Томсон, великий ирландский физик известный...

Читать далее

Паттерны биомаркеров старения, смертности и вредных мутаций проливают свет на начинающееся старение и причины ранней смертности - Гладышев 2019

Основные моменты Смертность от возрастных заболеваний U-образная с надиром ниже репродуктивного возраста Количественные биомаркеры старения постоянно меняются на протяжении всей жизни Бремя мутаций...

Читать далее

Клеточное старение. Определение пути вперед

Клеточное старение - это состояние клетки, вовлеченное в различные физиологические процессы и широкий спектр возрастных заболеваний. В последнее время быстро растет...

Читать далее

Видео: Суть старения и путь к долголетию - Гладышев В.Н.

Лекторий МГУ: Вадим Николаевич Гладышев, 28 мая 2019 г. 17.00Тема лектория: «Суть старения и путь к долголетию». Профессор Факультета биоинженерии и...

Читать далее

Японцы получили разрешение скрестить эмбрион человека и животного

Ученые давно проводят эксперименты по выведению различных гибридных видов животных. Как правило, это относится к лабораторным животным, опыты над которыми...

Читать далее

Мыши смогли восстановить ампутированные пальцы при помощи двух белков

  Возможно, в будущем люди смогут восстанавливать потерянные конечности — на это, во всяком случае, намекают медицинские эксперименты. Ученым уже известно...

Читать далее

Израильские учёные разработали универсальное лечение против рака

    Небольшая группа израильских учёных считает, что они нашли первое универсальное лечение против рака.  «Мы считаем, что через год мы предложим универсальное...

Читать далее

Клинические испытания первой омолаживающей терапии

    Самое первое человеческое испытание сенолитических лекарств, было объявлено ещё в июне, и большая часть мира практически не обратила внимания на него...

Читать далее

Старение внеклеточного матрикса

    Данная статья собрана из нескольких моих ранних заметок о влиянии внеклеточного матрикса на процесс старения. Текст статьи будет обновляться — я планирую...

Читать далее

Обзор достижений в борьбе со старением в 2018 году

   Каким был 2018 год в борьбе со старением? Год начался с хорошей новости. Под давлением общественности, ученых, организаций и сторонников борьбы со...

Читать далее

Таблетка от старости и кровь младенцев: достижения науки о старении в 2018 году

    2018-й принес обнадеживающие результаты в борьбе со старением и стал годом взрывного роста бизнеса на бессмертии. Начались испытания сенолитика — препарата, убивающего стареющие клетки, ключевого...

Читать далее

Китайский ученый заявил о рождении первых в мире генетически модифицированных детей

  Китайский ученый Цзянькуй Хэ заявил о рождении первых в мире детей из генетически отредактированных эмбрионов. По словам ученого, родились близняшки, у которых он попытался создать устойчивость к заражению...

Читать далее

Новая веха в медицине: Создан первый в мире сканер для всего тела

    Исследователи и ученые из Калифорнийского университета в Дейвисе со своими китайскими коллегами из компании United Imaging Healthcare (UIH) создали аппарат...

Читать далее

Первая искусственная роговица, напечатанная на 3D-принтере, уже готова для трансплантации

    Роговица — это крайне важная, но очень хрупкая часть нашего органа зрения. Она очень легко подвержена травмам и различным заболеваниям...

Читать далее

Ученые создают лазерный кожный регенератор из «Стартрека»

     Технологии из научно-фантастической вселенной «Стартрек» продолжают проникать в нашу реальную жизнь. Мы уже читали о медицинском трикодере, слышали о разработках...

Читать далее

Ученые создали универсальные имплантаты, которые не будут отторгаться организмом

  Любые материалы (в том числе и биологические), которые не созданы нашим организмом, в любом случае являются чужеродными и будут отторгаться...

Читать далее

«Получи я миллиард долларов сегодня, мы победили бы старение на 10 лет раньше. Это 400 миллионов жизней»

      Обри де Грей: большое интервью   В Москву на конференцию «Future in the City», которая пройдет 18 и 19 июля в башне «Империя» в Москва-Сити...

Читать далее

Генетик из Гарварда создал стартап по омоложению собак

В дальнейшем ученый намерен распространить исследования на людей.     Генетик, молекулярный инженер и химик Джордж Черч из Гарварда основал стартап Rejuvenate Bio...

Читать далее

Как наука приближает бессмертие к реальности?

    Поиски Понсе де Леоном фонтана вечной молодости могут быть легендой, но основная идея — поиск лекарства от старости — вполне реальна. Люди...

Читать далее

Секрет вечной жизни точно скрывается в наших клетках

    Однажды могущественный шумерский король по имени Гильгамеш отправился на происки, как это часто делают персонажи мифов и легенд. Гильгамеш стал...

Читать далее

Геронтологи готовы к прорыву

Остановись, старенье!   Ведущие ученые из 17 стран приехали в Россию, чтобы решить проблему старения. Именно теперь, по их мнению, накоплен критический...

Читать далее

Моя улучшенная версия: как жить вечно

      Джордж Чёрч [George Church] возвышается над большинством людей. У него длинная серая борода волшебника Средиземья, а работа всей его жизни...

Читать далее

Клеточная терапия без клеток: омоложение внеклеточными везикулами

  Восстановление сердечной мышцы после месяца терапии внеклеточными везикулами. Иммунные метки: агглютинин (красный), тропонин (зеленый) и DAPI (голубой)   Исследователи Колумбийского университета, работающие...

Читать далее

Биологи впервые собрали мышиный «эмбрион» прямо из стволовых клеток

  Бластоциста состоит из внешнего слоя клеток, из которого развивается плацента, и внутреннего – будущего детёныша. Здесь и ниже иллюстрации Nicolas...

Читать далее

Способ борьбы со старением: обращение вспять процесса снижения концентрации НАД+

    Старение сопровождается развитием метаболических нарушений и дряхлением. Недавние исследования продемонстрировали, что снижение уровня никотинамидадениндинуклеотида (НАД+) – ключевой фактор замедления обменных процессов, связанного...

Читать далее

Лекарства от старения, и Где они обитают

Время напрямую людей не убивает, старение – это биологический процесс. Есть группа заболеваний, которые называют возраст-ассоциированными, или старческими. Основным фактором риска...

Читать далее

Создан микроскоп, позволяющий наблюдать за движением клеток внутри организма

Ученые из Медицинского института Говарда Хьюза усовершенствовали метод флюоресцентной микроскопии таким образом, что теперь с ее помощью можно снимать в...

Читать далее

Ученые имплантировали маленький человеческий мозг мыши

Имплантация органов и тканей – вещь в науке далеко не новая. Не первый день существуют и так называемые кортикальные наборы...

Читать далее

В человеческих клетках впервые обнаружена новая форма ДНК

Ученые из австралийского Института медицинских исследований Гарвана сообщили об открытии в клетках человеческого организма необычных структур ДНК – i-мотивов (intercalated-motif...

Читать далее

Нанонож лишнего не отрежет: хирурги тестируют точечную терапию рака

Самое распространенное среди мужчин онкологическое заболевание, рак простаты, которым страдает примерно четверть пациентов урологических стационаров, до недавнего времени лечили хирургически — удаляли...

Читать далее

В США впервые в мире провели комплексную пересадку пениса и мошонки

Врачам из больницы Джона Хопкинса (штат Мэриленд) удалось провести успешную комплексную трансплантацию пениса и мошонки. Операция длилась 14 часов, в...

Читать далее

Антиоксидант MitoQ омолаживает сосуды

Результаты, полученные исследователями университета Колорадо в Боулдере, работающими под руководством профессора Дага Силса (Doug Seals), еще раз подтвердили, что применение...

Читать далее

Эпидемия молодости: как прожить 120 лет и стать счастливым

    Около 5% нынешних молодых и богатых проживут 120 лет и дольше, считают биохакеры. Читайте, что для этого нужно делать. Осенью 2017...

Читать далее

Имплантация пигментного слоя сетчатки помогла сохранить зрение

    Борьба с заболеваниями, которые в той или иной степени угрожают жизни человека – одно из самых приоритетных направлений современной медицины...

Читать далее

В США протестировали мозговой имплантат для улучшения памяти

    Американские исследователи провели проверку имплантата-электростимулятора, призванного усилить память. В среднем способность к запоминанию слов удалось улучшить на 15%. Если технология пройдет...

Читать далее

Ученым впервые удалось воссоздать легочную ткань

    Лечение стволовыми клетками находит все большее применение в медицинской практике. Так, например, группа китайских ученых из Университета Тунцзи не так...

Читать далее

Ученые МИЭТа планируют начать серийное производство аппарата вспомогательного кровообращения для детей уже в этом году

    В 2012 году благодаря ученым нашего университета была осуществлена первая в России успешная операция по имплантации «искусственного сердца» человеку. К...

Читать далее

Первый шаг к тканеинженерным надпочечникам

    Исследователи лондонского университета королевы Марии, работающие под руководством доктора Леонардо Гуасти (Leonardo Guasti), использовали репрограммированные клетки для создания первого прототипа...

Читать далее
Image

Оцифровка пользователя, Моделирование, 3D-визуализация.

Создание подробной цифровой копии на основе данных из медкарты.

Анализ данных. Исправление показателей организма.

Image

Взаимодействие цифровых профилей с целью улучшения показателей.

Обмен знаниями, проведение общих исследований.

Загрузка личного аватара в 3D мир. Игрификация, соревнования.

Image

В разработке

  • Официальная страница о медицинских чат-ботах на сайте Сверхчеловечество.рф
  • Подробности разработки чат-бота для проекта "Карта управления возрастом" (для партнеров и разработчиков) здесь:
Image

Обзор мировых разработок по хранению данных в разработке

Хранилище данных для Электронной Медицинской Карты Управления Возрастом в разработке

Материалы по теме:

Image

Основное взаимодействие планируется производить посредством Социальной сети:

Также существует множество специализированных телемедицинских сервисов:

Image

Данный раздел находится в разработке и будет доступен после запуска Электронной медицинской Карты Управления Возрастом:

Image

Основной материал сайта по теме искусственного интеллекта в медицине здесь:

На основе данной статьи будет определяться разработчик искусственного интеллекта для данной системы управления возрастом.

Image

ВАШ ЛИЧНЫЙ ВКЛАД В БОРЬБУ СО СТАРЕНИЕМ

Скооперируйтесь с тысячами других участников и создайте любой проект в области антистарения, проведите научные исспедования

Площадка для создания и финансирования проектов. Официальная страница сайта Сверхчеловечество.рф для сбора средств на ускорение прогресса в области омоложения:

Image
Image

Основная страница сайта Сверхчеловечество.рф о создании и участии в клинических испытаниях терапий антистарения и отката возраста организма здесь: