Искусственная кровь

 

Биофизик Михаил Пантелеев о проблемах донорской крови, выращивании и программировании новых клеток из стволовых и прототипах искусственных тромбоцитов

 

искусственная кровь

 

В настоящее время существует два варианта производства искусственных клеток крови — это клетки крови, выращенные в пробирке, или полностью искусственные объекты с функциями клеток крови.

 

Внутренняя среда организмов

 

Первые организмы на Земле были одноклеточными. Как только возникли многоклеточные, у них появилась проблема транспорта, потому что нужно доставлять питательные вещества к каждой клетке. Какие-то организмы решали эту проблему как губки, прокачивая большие объемы воды через себя так, что каждая клетка была в контакте с внешней средой. Другие, по-видимому, старались быть максимально плоскими для тех же целей. Но для того, чтобы получились истинные многоклеточные (или многотканевые), подходил единственный, самый эффективный вариант — жидкая внутренняя среда, которая разносила питательные вещества и уносила отходы жизнедеятельности. Однако, как только появились первые организмы, у которых была такая внутренняя среда, им сразу же были нужны механизмы защиты этой ценной жидкости от ее вытекания и вторжения чужаков при ранениях.

Исходно защитой занималась одна и та же клетка, которая чаще всего называется амебоцит. У разных беспозвоночных, которые живут сейчас, эти клетки называются по-разному в зависимости от их строения и типа внутренней среды (или сред). Относительно ко всем, у кого есть гемолимфа, используют слово «гемоцит», а у морских ежей, например, выделяют целомоциты, но более или менее универсальное название — амебоцит. На самом деле амебоциты есть даже у губок, и тут наблюдается полная аналогия с человеческим обществом: как только появляется общество со сколько-нибудь сложной структурой, сразу же происходит разделение на тех, кто работает, и тех, кто охраняет и наводит порядок. У губок тоже есть и стационарные клетки, и мобильные амебоциты.

 

Haeckel Calcispongiae
Изображение: Эрнст Генрих Геккель - Kunstformen der Natur (1904), plate 5: Calcispongiae/
Рисунок из книги Э. Геккеля «Красота форм в природе» (1904), изображающий различные известковые губки// wikipedia.org

 

Как только появляется полноценная внутренняя среда, амебоциты в ней становятся исключительно важными. Они плавают в этой среде и занимаются регенерацией по аналогии с нашими стволовыми клетками или охотятся на микробов, как наши лейкоциты. А когда возникает повреждение, они своим ходом плывут к месту повреждения и затыкают его, почти как наши тромбоциты. Но кислород они не разносят: у беспозвоночных пигмент для транспорта растворен в гемолимфе или, как у насекомых, для доставки кислорода используются трахеи. При этом амебоциты в целом могут быть разных типов или выполнять разные задачи в зависимости от зрелости, но радикальных различий между ними нет.

У позвоночных ситуация усложнилась, так как у них слишком высокие скорости потока и давление, а защитные клетки не могут сами приплыть к месту повреждения. Кроме этого, позвоночным нужно больше кислорода, а это значит, что просто растворить носитель кислорода в крови не получается. Его будет слишком много, и кровь будет слишком густой, поэтому его надо упаковать в какие-то «мешки». Система иммунитета тоже стала намного более мощной, и в результате у нас, позвоночных, особенно млекопитающих, произошло развитие амебоцитов до нескольких сильно непохожих ветвей. Это клетки крови: эритроциты, тромбоциты, лейкоциты. Несмотря на современную непохожесть, они до сих пор создаются из одного предшественника, потому что исходно это была одна и та же клетка.

 

Изображение: Слева направо: эритроцит, тромбоцит и лейкоцит (сканирующая электронная микроскопия)// wikipedia.org
 

Все три клетки специализируются на отдельных задачах: лейкоциты занимаются иммунитетом, эритроциты переносят кислород, а тромбоциты перекрывают своими телами место повреждения. Сейчас режим перекрывания места повреждения радикально изменился, поскольку тромбоциты при наших скоростях тока крови уже не могут сами туда приплыть. На тромбоцитах есть рецепторы — специальные молекулы, которые, когда тромбоциты мимо проносятся в потоке крови, цепляются за место повреждения. Они прикрепляются на коллаген в месте повреждения, застревают там, а следующие тромбоциты цепляются за те, которые уже застряли. Так начинает формироваться агрегат, тромбоцитарная пробка, которая перекрывает рану. Естественно, крупную рану в артерии пробка сама не перекроет, и рану нужно будет перебинтовать или зашить (есть дополнительные системы остановки кровотечений), но со всеми мелкими повреждениями, с которыми мы сталкиваемся по ходу обычной жизни, — царапинами, уколами, укусами, синяками — эта система справляется.

Мы можем воспроизвести элементы этой системы теперь: в последние 5 лет мы стали значительно лучше ее понимать. Мы знаем, какими белками тромбоциты прикрепляются друг за друга, какими рецепторами они цепляются за коллаген, какие липиды в составе тромбоцитов ускоряют реакции свертывания на их поверхности. Сейчас это можно неплохо имитировать, потому что для выполнения большей части этих функций не нужно иметь полноценную клетку — можно взять липосому или альбуминовую капсулу (обычно нанокапсулу размером в сотни нанометров) и вставить в нее нужные белки.

Но некоторые вещи, которые умеют делать тромбоциты, мы таким образом сделать не сможем. Например, тромбоциты несут в своих гранулах не менее семи факторов роста, которые занимаются регенерацией повреждений. Кроме того, тромбоциты умеют активироваться, переключаться в новый режим и в результате лучше цепляться друг за друга — такие свойства настоящих тромбоцитов реализовать с помощью липосом сложно.

Тем не менее сейчас (на самом деле уже более 10 лет назад) появились первые варианты искусственных тромбоцитов, которые воспроизводят часть тромбоцитарных функций, и в первую очередь они несут несколько рецепторов, позволяющих им закрепляться за те немногие тромбоциты, которые у человека остались. На довольно большом материале у животных и на первых стадиях клинических испытаний такие искусственные тромбоциты успешно останавливают кровотечения из ран. Однако проводить такие процедуры, когда у организма вообще не осталось собственных тромбоцитов вообще, не получится, но такое бывает редко.

 

Потребность в крови и искусственной крови

 

Нехватка тромбоцитов у человека происходит по нескольким причинам, которые можно разделить на две категории. Первая категория — это хронические заболевания, когда у человека плохо работают свои собственные тромбоциты. Например, произошла мутация и нет какого-нибудь белка, или возникла проблема с производством тромбоцитов и развивается какой-нибудь вариант анемии, или выработались антитела и стали убивать собственные тромбоциты человека. В таких случаях переливать тромбоциты в долгосрочной перспективе чаще всего противопоказано, потому что таким людям лечение нужно постоянно, а жить с чужими тромбоцитами постоянно невозможно: каждое переливание — это риски инфекции, острой иммунной реакции или выработки антител. Эти риски не очень большие, но при частых переливаниях опасения рано или поздно могут оправдаться. В острых случаях таким пациентам все равно помогает исключительно переливание тромбоцитов, а полностью искусственные клетки, в которых риски инфекции и некоторые другие можно свести к нулю, могут помочь этим людям перенести какую-нибудь операцию, чтобы хотя бы зуб можно было вырвать без риска смерти.

 

Изображение: P D E// flickr.com
 

Второй сценарий нехватки тромбоцитов — это острые ситуации: травмы, объемные хирургические операции, пересадка костного мозга, химиотерапия, недоношенность и просто внезапное падение числа тромбоцитов, из-за чего начинается кровотечение в слизистых или грозит внутричерепное кровотечение. Этим людям обязательно нужно переливать тромбоциты, но из-за того, что эти клетки очень капризные, хранятся всего несколько дней и практически не переносят заморозку, во всех клиниках, где нет своих больших станций переливания крови, с тромбоцитами всегда возникают проблемы.

 

Донорские клетки крови и растворы для переливания

 

Любые клетки крови можно получить от донора, теоретически — в любом количестве. Но у донорских клеток есть несколько принципиальных проблем, и первая — это риски, связанные с заражениями и иммунными ответами, которые в принципе нельзя предотвратить для некоторых видов клеток, например для тромбоцитов, потому что мы не можем сейчас определять заразность крови со стопроцентной надежностью. То есть не определяются те концентрации вирусов, при которых они становятся заразными. Для других клеток возможна карантинизация, когда клетки криоконсервируют и пускают в дело только через несколько месяцев, сделав тому же донору повторный анализ, чтобы проверить, не начала ли развиваться болезнь. Есть способы инактивации вирусов в продуктах крови, но все возможные вирусы, прионы и иные патогены проверить или уничтожить невозможно ни для одного типа клеток. К тому же существует непредсказуемость иммунных ответов, которые могут быть опасны, особенно для людей с проблемным здоровьем.

 

Изображение: Blood transfusion bags/ Welcome Images// flickr.com
 

Вторая проблема донорских клеток заключается в том, что они плохо хранятся, и тромбоциты в этом плане самые плохие. В некоторых случаях, например для лейкоцитов, есть другие сложности: переливать чужие лейкоциты в принципе достаточно рискованно, потому что это клетки иммунной системы, которые заточены на то, чтобы убивать чужое и помогать своему. Бывают специальные лейкоконцентраты и методы, позволяющие определять совместимость для минимизации рисков, но это достаточно непросто. Поэтому сейчас по клеткам крови наблюдается следующее распределение: во-первых, кровь никто никогда не переливает — просто потому, что это очень опасно и, самое главное, никогда не нужно. Порой доктора идут на такое от отчаяния, чтобы спасти жизнь людей во время полного отсутствия препаратов крови, но вообще такая практика полностью запрещена. Чаще всего людям просто переливают специальные растворы для восполнения объема крови (физраствор или иные), потому что это первое, что нужно при потере крови, иначе сердце не справляется. Во вторую очередь при более тяжелых кровопотерях или возникновении нужды переливают свежезамороженную плазму, для того чтобы решить проблемы со свертыванием. В третью очередь, если у человека не хватает гемоглобина, можно перелить эритроциты. Как ни странно, это оказывается нужно не так уж часто: наша кровь рассчитана на перенос кислорода с огромным запасом, в десятки раз больше, чем нужно человеку, тихо лежащему в реанимации. Наконец, в определенных ситуациях человеку переливают тромбоконцентраты: например, когда он лежит после пересадки костного мозга, у него первое время не работает кроветворение. В общем, каждый набор клеток переливают при разных обстоятельствах, в разных условиях, и с каждым есть свой набор проблем.

 

Искусственные клетки крови

 

Два самых проблемных пункта — это тромбоциты и лейкоциты. В производстве искусственных тромбоцитов сейчас идет соревнование двух описанных выше вариантов. Есть команды, которые уже делают тромбоциты из стволовых клеток. Достоинство этого варианта в том, что вы можете взять стволовые клетки или даже перепрограммировать иные клетки у будущего реципиента и сделать для него «родные» тромбоциты. Проблема в стоимости и производительности: сейчас производительность этого метода стремится к нулю, а стоимость является совершенно заоблачной. Кроме этого, существуют большие сомнения в том, насколько эти тромбоциты являются настоящими: получаются клетки, похожие на тромбоциты, но in vitro очень сложно воспроизвести весь процесс созревания настоящего тромбоцита. Есть работы, которые показывают, что эти клетки по тем или иным пунктам не совпадают с нормальными тромбоцитами, поэтому получается, что, с одной стороны, производство искусственных тромбоцитов из стволовых клеток в долгосрочной перспективе является очень привлекательным путем, который может дать идеально совместимые и полноценные тромбоциты, но, с другой стороны, этот путь очень и очень далекий, хотя и принципиально работающий.

Кроме выращивания тромбоцитов из стволовых клеток есть варианты изготовления совершенно искусственных тромбоцитов. Обычно это липидные микросферы или белковые нанокапсулы, в которых есть набор белков, обеспечивающих функции, похожие на тромбоцитарные. Такие объекты могут формировать агрегаты с тромбоцитами и перекрывать раны. Прототипы таких искусственных тромбоцитов существуют уже около 15 лет, некоторые из них доходили до второй стадии клинических испытаний, но пока что не пробились в клиническую практику. Однако эта технология в самое ближайшее время может дать вполне реальный продукт; сейчас идет соревнование между несколькими ведущими компаниями, создающими разные варианты таких тромбоцитов. Скорее всего, он в любом случае будет в чем-то проигрывать настоящим тромбоцитам, так как у него почти наверняка отсутствуют какие-то функции полноценных клеток, которые активно участвуют и в регенерации, и в иммунитете. Но он сможет останавливать кровотечения, и это главное. Это будет очень удобная для применения вещь — что-нибудь вроде порошка в банке, который может стоять на полке, а при необходимости разводиться водой и переливаться, например, в экспедициях, в военно-полевых условиях, при глобальных катастрофах без необходимости проверять совместимость или иметь под рукой сложное оборудование.

 

Изображение: Тромбоциты и активированные тромбоциты// wikipedia.org
 

Пожалуй, тромбоциты — самый интересный, востребованный и реальный объект с точки зрения создания искусственных клеток крови в любом смысле. Хуже всего дело обстоит с лейкоцитами. Иммунитет — это сложная система, которую мы пока не умеем наладить с нуля. Создание полностью искусственного аналога для лейкоцитов, как обсуждалось выше для тромбоцитов и эритроцитов, пока кажется фантастикой — точнее, аналогов, ведь типов лейкоцитов много, у каждого из них сложные функции. Производство лейкоцитов из стволовых клеток кажется чуть более реалистичным, и работы в этом направлении идут. Полноценные нейтрофилы научились делать больше 10 лет назад. Но здесь очень много препятствий: надо уметь производить в достаточном количестве каждый из типов, а затем обучить эти клетки не атаковать хозяина. Теоретически эти проблемы могут быть решены, но сложности тут более серьезные, чем с тромбоцитами. В настоящее время недостаток лейкоцитов стараются лечить препаратами, стимулирующими их развитие. В краткосрочных случаях можно пойти на риски использования лейкоконцентратов, а в тяжелых случаях иммунодефицитов (или когда проблема не только с количеством клеток, но и с наличием в них дефектов) приходится идти на пересадку костного мозга.

Для замены эритроцитов можно делать — и люди этим занимаются — разнообразные варианты искусственных носителей кислорода, но это в каком-то смысле наименее интересная задача, потому что существуют донорские клетки, существует перфторан и его аналоги. Перфторан, часто называемый «голубой кровью», — это знаменитый носитель кислорода, разработанный в России. Кроме этого, эритроциты прекрасно переносят криоконсервирование, которое не только позволяет создавать большие запасы клеток крови и транспортировать их куда угодно, но также означает, что у человека можно взять эритроциты, а через полгода проверить, не проявился ли у этого человека СПИД, ВИЧ. Такая карантинизация сводит к минимуму риски заболеваний. Если говорить о плазме крови, то пока заменить природную плазму с ее разнообразием функций невозможно, хотя сейчас уже создаются искусственные растворы для переливания с коррекцией отдельных функций.

 

2017 Источник: postnauka.ru

Нейроинтерфейс позволил общаться с «запертыми» людьми

 

общение запертого человекаУчастница исследования с нейроинтерфейсом

 

Международная группа ученых разработала систему, которая позволяет пациентам с синдромом «запертого человека» отвечать «да» или «нет» на заданные вопросы. Результаты работы опубликованы в журнале PLoS Biology.

Синдромом «запертого человека» называется состояние полного паралича мышц, при котором пациент не может двигаться и разговаривать, при этом находится в полном сознании с незатронутыми эмоциями и мышлением. Некоторые из таких людей могут реагировать на сказанное движениями глаз, состояние остальных внешне практически не отличается от комы (в этом случае оно называется синдромом «полностью запертого человека»). Причиной этого состояния могут стать травмы головы, инсульт, энцефалит, полиомиелит и различные неврологические расстройства, связанные с поражением двигательных нейронов или их аксонов.

Существующие экспериментальные нейрокомпьютерные интерфейсы (НКИ) могут частично вернуть «запертым» людям возможность общаться, но требуют имплантации электродов непосредственно в мозг. Попытки создать аналогичные интерфейсы, основанные на регистрации мозговых волн (электроэнцефалографии, ЭЭГ) и некоторых других проявлений активности мозга, успехом пока не увенчались.

В поиске неинвазивной технологии для общения при синдроме «запертого человека» сотрудники Тюбингенского университета с коллегами из других научных центров Германии, США, Китая и Швейцарии создали систему, основанную на функциональной спектроскопии в ближней инфракрасной области (фБИКС, fNIRS). Этот метод позволяет оценивать активность различных участков коры мозга по интенсивности кровотока в них — гемоглобин, в отличие от тканей, хорошо поглощает ближнее инфракрасное излучение.

В испытаниях системы приняли участие четыре пациента, у которых синдром «запертого человека» развился в результате бокового амиотрофического склероза — неизлечимого заболевания, при котором гибель двигательных нейронов приводит к прогрессирующему параличу мышц. В ходе эксперимента исследователи использовали машинное обучение с учителем (методом опорных векторов), чтобы натренировать алгоритм различать ответы «да» и «нет» по изменениям кровотока в лобно-центральных участках коры мозга. Для этого они регистрировали подобные изменения методом фБИКС в то время, когда пациенты реагировали на заведомо верные (например, «Париж — столица Франции») или неверные (например, «Париж — столица Германии») утверждения. Три пациента в течение нескольких недель прошли 46 обучающих сессий, четвертый — 20. Дополнительно к фБИКС ученые регистрировали ЭЭГ, чтобы проверять внимательность участников — низкочастотные дельта- и тета-волны, соответствующие сну, дреме или медитации, коррелировали с увеличением числа ошибок системы.

В результате обучения система смогла различать ответы «да» и «нет» с 70-процентной точностью. После этого пациентам стали задавать вопросы, ответы на которые неизвестны (например, «Болит ли у вас что-нибудь?» или «Хотите ли вы съездить в Лондон?»). Каждый вопрос повторяли 10 раз, и если система по меньшей мере в семи случаях регистрировала ответ «да», он считался реальным мнением пациента.

Таким образом, с помощью системы ученые и родственники получили возможность общаться с «запертыми» пациентами. К примеру, одна из участниц сообщила, что хотела бы увидеть Нью-Йорк, другая — навестить брата в Испании, а пожилой пациент выразил отрицательное отношение к браку своей внучки с мужчиной младше нее.

Исследователей интересовал вопрос, насколько их подопечные удовлетворены жизнью в своем состоянии, и, по словам одного из авторов работы Нильса Бирбаумера (Niels Birbaumer), все участники сообщили, что «жизнь прекрасна». Эти контринтуитивные данные соответствуют результатам исследования 2011 года, согласно которым большинство пациентов со стабильным синдромом «запертого человека» вполне довольны жизнью, что необходимо учитывать при обработке запросов на эвтаназию (при стабилизации «запертого» состояния отношение к жизни может измениться в лучшую сторону). Как пояснил другой член научного коллектива Уджвал Чаудхари (Ujwal Chaudhary), существует гипотеза о том, что мозг людей в этом состоянии, пытаясь защитить рассудок, утрачивает способность к обработке негативных эмоций.

Разработкой и совершенствованием нейроинтерфейсов занимаются группы ученых по всему миру, и многим удалось достичь немалых успехов. В качестве примеров можно привести системы, позволяющие управлять отдельными пальцами протеза, самостоятельно принимать пищу, передвигаться и осязать искусственную руку при параличе конечностей, а также частично восстановить спинной мозг после травмы. Недавно американо-китайскому коллективу удалось довести скорость неинвазивного нейроинтерфейса до одного символа в секунду.

 

1.02.2017 Источник: Олег Лищук nplus1.ru

Клеточный спецназ: найти и уничтожить опухоль

 

клетки

 

Ученые из США перепрограммировали клетки кожи, чтобы те смогли бороться с опухолью мозга. Первый удачный эксперимент был проведен на лабораторных мышах. В результате опухоли мышей сократились до 2 % – 5 % от первоначального размера. Хотя метод еще не проверен на людях, он может в один прекрасный день дать врачам быстрый способ разработки персонализированного лечения агрессивных видов рака, таких как глиобластома, которая убивает большинство пациентов за 12 – 15 месяцев. В опыте с мышами создание самонаводящихся на опухоль клеток потребовало всего четыре дня.

Глиобластомы относятся к такому типу опухолей, которые очень сложно удалить хирургическим путем. Опухоль возникает из клеток нейроглии, окружающих нейроны и обеспечивающих их работу. Такие опухоли, как правило, не имеют четких границ.

Клетки глиобластомы, как и других видов опухолей, выделяют химический сигнал, привлекающий стволовые клетки. Обычно эту роль играют специфические белки IGF-1 и SDF-1, которые в здоровом организме служат сигналом, привлекающим стволовые клетки к местам повреждений, чтобы там они могли дифференцироваться в клетки нужного типа и заместить их. Это явление называют «хоумингом стволовых клеткок». В случае опухоли стволовые клетки укрепляют ее дополнительной тканью.

Поскольку нормальные стволовые клетки больного начинают активно мигрировать в район опухоли, возникает естественная мысль сделать такие клетки средством борьбы с глиобластомой. Для этого нужно снабдить их соответствующим оружием, убивающим клетки опухоли. В качестве такого оружия обычно используются гены белков, связанных с иммунным ответом. Например, ген токсичных для клеток опухоли белков Tag7 или IL12.

В предшествующих исследованиях для этой цели пытались использовать нейральные стволовые клетки, которые дают начало нейронам и другим клеткам головного мозга. Но лишь немногие разработки были доведены до стадии проверки на пациентах, так как получить нейральные стволовые клетки очень трудно. Их можно взять непосредственно у самого пациента, от донора или же получить генетическим перепрограммированием взрослых клеток. Но получение нейральных стволовых клеток от человека предполагает хирургическое вмешательство, а перепрограммирование взрослых клеток увеличивает вероятность их перерождения в опухолевые стволовые клетки. Использование клеток донора к тому же поставит врачей перед проблемой иммунного ответа организма пациента на введение чужеродных клеток.

Группа Шона Хинчена (Shawn Hingtgen) из Университета Северной Каролины искала способ упростить процесс генетического перепрограммирования клеток для борьбы с глиобластомой. Обычно клетки кожи (фибробласты) превращают в плюрипотентные индуцированные стволовые клетки (подробнее этот процесс описан в отдельном очерке), а затем добиваются их дифференциации в нейральные стволовые клетки, которые и отправляют мигрировать к месту опухоли. Теперь, как утверждают исследователи, им удалось превратить этот процесс в одношаговый. О своих экспериментах они рассказали в журнале Science Translational Medicine.

 

ps minibrain «Мини-мозг», выращенный из стволовых клеток в Институте молекулярной биологии в Австрии. Фото: IMBA/Madeline A. Lancaster

 

Проверка на клеточных культурах в чашках Петри показала, что полученные клетки имеют способность к хоумингу. Они упорно стремились к клеткам глиобластомы, преодолевая расстояние в 500 микрон за 22 часа, и удачно прикреплялись к опухолевым клеткам.

В дальнейших экспериментах Хинчен и его коллеги проверили способность полученных клеток доставлять средство борьбы с раком к глиобластоме в организме мышей. Опухоли мышей, получивших инъекцию перепрограммированных клеток, уменьшились в размере в 20 – 50 раз по сравнению с контрольной группой. Продолжительность жизни мышей, получивших инъекции, выросла почти в два раза. У некоторых мышей исследователи удалили остатки опухоли после воздействия на нее перепрограммированными клетками и провели дополнительное лечение, вводя новые клетки в место бывшей опухоли. В результате количество остаточных опухолей, развившихся из выживших клеток первичной опухоли, сократилось в 3,5 раза по сравнению с контрольной группой.

Тем не менее, предстоят еще эксперименты, чтобы определить способности полученных клеток к миграции. В человеческом мозге им предстоит преодолевать расстояние в несколько миллиметров или даже сантиметров, чтобы найти и уничтожить клетки опухоли. А это значительно больше, чем 500 микрон, которые они прошли в эксперименте.

Ряд исследователей ставит под сомнение необходимость перепрограммировать собственные клетки пациента. Например, специалист по стволовым клеткам Эван Снайдер (Evan Snyder) из Института медицинских исследований Сэнфорда – Бернэма – Пребиса (Sanford Burnham Prebys Medical Discovery Institute) в Сан-Диего считает, что иммунный ответ организма на чужие клетки будет способствовать уничтожению опухоли.

Сейчас группа Хинчена проводит эксперименты по использованию мигрирующих стволовых клеток для уничтожения уже человеческих клеток глиобластомы. Пока они находятся на стадии проверки в клеточных культурах.

 

2.02.2017 Источник: polit.ru

Больных гриппом вычислят с помощью портативного сенсора дыхания

 

b6efe14b035fa4d3cddc190052e92f5f

 

Американские ученые создали систему для выявления гриппа по анализу выдыхаемого воздуха. О своей разработке исследователи рассказывают в статье, опубликованной в журнале Sensors.

В дыхании человека, который страдает определенным заболеванием, могут присутствовать биомаркеры, указывающие на наличие болезни. Например, у пациентов с астмой повышена концентрация оксида азота в выдыхаемом воздухе, а у диабетиков в дыхании присутствует ацетон. Проанализировав медицинскую литературу, авторы новой работы определили, что грипп связан с наличием изопрена и аммиака в выдыхаемом воздухе, а также с увеличенным содержанием оксида азота. На основе этих данных инженеры создали устройство, которое анализирует дыхание пациента и содержащиеся в нем биомаркеры.

Новая система отдаленно напоминает индикаторные трубки, которые полиция использует для того, чтобы определить степень опьянения водителей. Пациенту необходимо просто выдохнуть в устройство с тремя полупроводниковыми датчиками для регистрации связанных с гриппом соединений. Эти датчики представляют собой вещество с нанокристаллической структурой, которое подобрано так, что при прохождении газа через сенсор, молекулы содержащихся в нем биомаркеров сорбируются датчиком и меняют электропроводимость вещества.

В частности, исследователи разработали новый сенсор, который может одновременно определять присутствие двух веществ. Для этого они использовали гексагональную модификацию оксида вольфрама (WO₃), который при нагреве до температуры 150 градусов Цельсия чувствителен к оксиду азота, а при нагреве до 350 градусов Цельсия — к изопрену.

 

Создатели устройства отмечают, что соединение нескольких сенсоров в одном приборе позволит в будущем диагностировать грипп у пациента на ранней стадии, а также отследить изменение концентрации разных веществ в дыхании. На данный момент система, представляющая собой три датчика со встроенной схемой считывания и цепью управления нагревателя, является скорее первым шагом к полноценным беспроводным респираторным трубкам для выявления инфекции. Тем не менее, ученые говорят о том, что производство таких устройств не требует больших денежных затрат, а это значит, что в будущем, после некоторых доработок, оно может появиться в аптеках. Больные смогут приносить прибор домой, выдыхать воздух на систему сенсоров, после чего данные будут передаваться в центральную систему для интерпретации.

Недавно американские ученые создали универсальный сенсор, который может в режиме реального времени измерять концентрацию в крови молекул-мишеней. В будущем он поможет фармакологами увидеть как быстро усваивается лекарственный препарат, а физиологам — отследить распространение гормонов и метаболитов в крови.

 

Источник: Кристина Уласович nplus1.ru

Созданы устойчивые к туберкулёзу коровы

 

GMO cattle

 

Учёные из Северо-западного научно-технического университета сельского и лесного хозяйства (кит. 西北农林科技大学) вывели трансгенных коров с повышенной устойчивостью к туберкулёзу. Они использовали модифицированную версию CRISPR, благодаря чему им удалось избежать распространённой проблемы исходной технологии — появления незапланированных мутаций. Результаты работы опубликованы в журнале Genome Biology.

«Мы успешно встроили ген устойчивости к туберкулёзу под названием NRAMP1 в геном коровы благодаря новой версии системы CRISPR — CRISPR/Cas9n, — рассказывает ведущий автор исследования, доктор Юн Чжан (Yong Zhang). — Затем нам удалось вывести коров с повышенной устойчивостью к туберкулёзу. Важно отметить, что наш метод не приводит к появлению нецелевых эффектов, а это значит, что использованная нами технология CRISPR может лучше подойти для создания трансгенного скота с целенаправленно изменённым геномом».

В последнее время в генной инженерии активно применяют технологию CRISPR/Cas9. Она относительно простая, но периодически приводит к возникновению неожиданных мутаций. Предотвратить их появление — одна из самых важных задач современной генетики. «При встраивании в геном млекопитающего нового гена, сложность заключается в том, чтобы найти наилучшее место для его вставки, — объясняет Чжан. — Вам нужно перерыть геном в поисках региона, который, как вам кажется, оказывает наименьшее влияние на другие гены, которые находятся в непосредственной близости. Нам удалось идентифицировать наиболее подходящий для вставки гена участок, который, как мы смогли продемонстрировать, не приводит к возникновению нецелевых эффектов».

Около десяти лет назад стало известно, что развитие и течение туберкулёза регулирует ген NRAMP1. Микобактериями туберкулёза заражён примерно каждый третий житель планеты, но у большинства возбудители находятся в «спящем состоянии». Аллели (варианты) гена NRAMP1 влияют на то, разовьётся ли у человека (или животного) туберкулёз и с какой скоростью будет протекать процесс, если это всё же случится. Исследователи встроили нужный вариант гена NRAMP1 в геном фибробластов, полученных из плодов возрастом 35—40 дней, а затем перенесли ядра этих клеток в яйцеклетки коровы. Из них в лаборатории получили эмбрионы, которые поместили в матки коров. Аналогичные эксперименты провели с использованием классической технологии CRISPR/Cas9, чтобы сравнить результаты.

Всего учёные получили из 4819 эмбрионов 20 телят, при этом 11 из них прожили дольше трёх месяцев. Геном выживших телят проверили на наличие непредвиденных изменений с помощью ПЦР и Саузерн-блоттинга — метода, который позволяет обнаружить специфические формы ДНК в клетках. В процессе Саузерн-блоттинга молекулы ДНК удаляют из клеток и специальными ферментами разделяют на небольшие фрагменты. Эти фрагменты отделяют друг от друга, и с помощью генного зонда (меченого радиоактивным веществом участка ДНК) ищут идентичные участки ДНК. Ни у одного из девяти телят, полученных с помощью CRISPR/Cas9n, не удалось обнаружить никаких нецелевых изменений генома. Встроенный NRAMP1 не повлиял на работу других генов, а кодируемый им белок не попал в кожу, мускулы, сердце, печень, почки или лёгкие — а потому учёные заключили, что ген встал точно на место. А вот у двух животных, созданных с помощью CRISPR, незапланированные мутации нашлись.

Учёные взяли образцы крови у трансгенных и обычных коров той же породы и подвергли их воздействию возбудителей «бычьего туберкулёза» — микобактерии Mycobacterium bovis. Оказалось, что белые кровяные тельца ГМ-коров борются с инфекцией лучше. В частности, заразившись, клетки трансгенных животных самоуничтожаются в два раза чаще — этот процесс, называемый «апоптозом», помогает предотвратить распространение инфекции. Затем исследователи провели эксперимент in vivo: они случайным образом отобрали шесть трансгенных и столько же нормальных животных и заставили их вдохнуть M. bovis. После этого у телят через определённые промежутки времени брали анализы крови. Измеряя уровень стандартных маркеров инфекции в образце крови, учёные пришли к выводу, что ГМ-коровы действительно более устойчивы к болезни.

«Наше исследование впервые показало, что систему CRISP/Cas9n можно использовать для создания трансгенного скота, не получая при этом нецелевых эффектов, — говорит Чжан. — В ходе экспериментов мы обнаружили участок в геноме коров, в который благодаря этой технологии можно будет вставить новые гены, полезные для сельскохозяйственных животных».

 

1.02.2017 Источник: 22century.ru

Частичное перепрограммирование восстанавливает молодую экспрессию генов за счет временного подавления идентичности клеток

 Авторы: Antoine Roux, Chunlian Zhang, Jonathan Paw, José Zavala-Solorio, Twaritha Vijay, Ganesh Kolumam, Cynthia Kenyon, Jacob C. Kimmel     Аннотация   Сообщалось, что временная индукция...

Читать далее

Профилирование эпигенетического возраста в отдельных клетках

 Авторы: Александр Трапп, Чаба Керепеси, Вадим Николаевич Гладышев     Аннотация   Метилирование ДНК определенного набора динуклеотидов CpG стало критическим и точным биомаркером процесса старения. Многовариантные модели машинного обучения, известные как...

Читать далее

Эпигенетические часы показывают омоложение во время эмбриогенеза, с последующим старением

      Краткое содержание   Представление о том, что клетки зародышевой линии не стареют, возникло еще  с 19-го века от идей Августа Вейсманна. Однако...

Читать далее

Мультиомиксное омоложение клеток человека путем кратковременного перепрограммирования в фазе созревания

      Краткое содержание   Старение - это постепенное снижение физической формы организма, которое со временем приводит к дисфункции тканей и заболеваниям. На клеточном...

Читать далее

Универсальный возраст по метилированию ДНК в тканях млекопитающих (препринт)

Новые результаты       Старение часто воспринимается как дегенеративный процесс, вызванный случайным накоплением клеточных повреждений с течением времени. Несмотря на это, возраст можно...

Читать далее

Ограниченное омоложение старых гемопоэтических стволовых клеток в молодой нише костного мозга

      Гемопоэтические стволовые клетки (HSC) с возрастом обнаруживают функциональные изменения, такие как снижение регенеративной способности и миелоидно-зависимая дифференцировка. Ниша HSC, которая...

Читать далее

Разведение плазмы улучшает когнитивные функции и снижает нейровоспаление у старых мышей

      Наше недавнее исследование установило, что факторы молодой крови не являются причиной и не являются необходимостью для системного омоложения тканей млекопитающих...

Читать далее

Пора кончать со старой кровью - Джош Миттельдорф

      2020 год обещает нам, что мы сможем сделать наши тела молодыми без явного восстановления молекулярных повреждений, но лишь просто изменив...

Читать далее

Омоложение тканей трех зародышевых листков путем замены плазмы старой крови солевым раствором альбумина

     Аннотация   Гетерохронный обмен крови омолаживает старые ткани, и большинство исследований о том, как это работает, фокусируется на молодой плазме, ее фракциях...

Читать далее

Обращение возраста: измерение эпигенетического возраста двух разных видов с помощью одних часов

   Аннотация   Известно, что молодая плазма крови оказывает благотворное влияние на различные органы у мышей. Однако не было известно, омолаживает ли молодая...

Читать далее

Прорыв в омоложении

  Если вы избегаете громких заявлений и в течении длительного времени соблюдаете дисциплину недосказывания посреди яркого неонового мира, то возможно вы...

Читать далее

Трансплантация ACE2-мезенхимальных стволовых клеток улучшает результат лечения у пациентов с пневмонией, вызванной COVID-19

Озвучить текст роботом: 

    Краткое содержание   Коронавирус (HCoV-19) вызвал новую вспышку коронавирусной болезни (COVID-19) в Ухане, Китай. Профилактика и реверсия...

Читать далее

Диагностика старения на основе 9 признаков «Hallmarks of Aging»

  “Если вы не можете измерить это, вы не можете улучшить его”, — так сказал Уильям Томсон, великий ирландский физик известный...

Читать далее

Паттерны биомаркеров старения, смертности и вредных мутаций проливают свет на начинающееся старение и причины ранней смертности - Гладышев 2019

Основные моменты Смертность от возрастных заболеваний U-образная с надиром ниже репродуктивного возраста Количественные биомаркеры старения постоянно меняются на протяжении всей жизни Бремя мутаций...

Читать далее

Клеточное старение. Определение пути вперед

Клеточное старение - это состояние клетки, вовлеченное в различные физиологические процессы и широкий спектр возрастных заболеваний. В последнее время быстро растет...

Читать далее

Видео: Суть старения и путь к долголетию - Гладышев В.Н.

Лекторий МГУ: Вадим Николаевич Гладышев, 28 мая 2019 г. 17.00Тема лектория: «Суть старения и путь к долголетию». Профессор Факультета биоинженерии и...

Читать далее

Японцы получили разрешение скрестить эмбрион человека и животного

Ученые давно проводят эксперименты по выведению различных гибридных видов животных. Как правило, это относится к лабораторным животным, опыты над которыми...

Читать далее

Мыши смогли восстановить ампутированные пальцы при помощи двух белков

  Возможно, в будущем люди смогут восстанавливать потерянные конечности — на это, во всяком случае, намекают медицинские эксперименты. Ученым уже известно...

Читать далее

Израильские учёные разработали универсальное лечение против рака

    Небольшая группа израильских учёных считает, что они нашли первое универсальное лечение против рака.  «Мы считаем, что через год мы предложим универсальное...

Читать далее

Клинические испытания первой омолаживающей терапии

    Самое первое человеческое испытание сенолитических лекарств, было объявлено ещё в июне, и большая часть мира практически не обратила внимания на него...

Читать далее

Старение внеклеточного матрикса

    Данная статья собрана из нескольких моих ранних заметок о влиянии внеклеточного матрикса на процесс старения. Текст статьи будет обновляться — я планирую...

Читать далее

Обзор достижений в борьбе со старением в 2018 году

   Каким был 2018 год в борьбе со старением? Год начался с хорошей новости. Под давлением общественности, ученых, организаций и сторонников борьбы со...

Читать далее

Таблетка от старости и кровь младенцев: достижения науки о старении в 2018 году

    2018-й принес обнадеживающие результаты в борьбе со старением и стал годом взрывного роста бизнеса на бессмертии. Начались испытания сенолитика — препарата, убивающего стареющие клетки, ключевого...

Читать далее

Китайский ученый заявил о рождении первых в мире генетически модифицированных детей

  Китайский ученый Цзянькуй Хэ заявил о рождении первых в мире детей из генетически отредактированных эмбрионов. По словам ученого, родились близняшки, у которых он попытался создать устойчивость к заражению...

Читать далее

Новая веха в медицине: Создан первый в мире сканер для всего тела

    Исследователи и ученые из Калифорнийского университета в Дейвисе со своими китайскими коллегами из компании United Imaging Healthcare (UIH) создали аппарат...

Читать далее

Первая искусственная роговица, напечатанная на 3D-принтере, уже готова для трансплантации

    Роговица — это крайне важная, но очень хрупкая часть нашего органа зрения. Она очень легко подвержена травмам и различным заболеваниям...

Читать далее

Ученые создают лазерный кожный регенератор из «Стартрека»

     Технологии из научно-фантастической вселенной «Стартрек» продолжают проникать в нашу реальную жизнь. Мы уже читали о медицинском трикодере, слышали о разработках...

Читать далее

Ученые создали универсальные имплантаты, которые не будут отторгаться организмом

  Любые материалы (в том числе и биологические), которые не созданы нашим организмом, в любом случае являются чужеродными и будут отторгаться...

Читать далее

«Получи я миллиард долларов сегодня, мы победили бы старение на 10 лет раньше. Это 400 миллионов жизней»

      Обри де Грей: большое интервью   В Москву на конференцию «Future in the City», которая пройдет 18 и 19 июля в башне «Империя» в Москва-Сити...

Читать далее

Генетик из Гарварда создал стартап по омоложению собак

В дальнейшем ученый намерен распространить исследования на людей.     Генетик, молекулярный инженер и химик Джордж Черч из Гарварда основал стартап Rejuvenate Bio...

Читать далее

Как наука приближает бессмертие к реальности?

    Поиски Понсе де Леоном фонтана вечной молодости могут быть легендой, но основная идея — поиск лекарства от старости — вполне реальна. Люди...

Читать далее

Секрет вечной жизни точно скрывается в наших клетках

    Однажды могущественный шумерский король по имени Гильгамеш отправился на происки, как это часто делают персонажи мифов и легенд. Гильгамеш стал...

Читать далее

Геронтологи готовы к прорыву

Остановись, старенье!   Ведущие ученые из 17 стран приехали в Россию, чтобы решить проблему старения. Именно теперь, по их мнению, накоплен критический...

Читать далее

Моя улучшенная версия: как жить вечно

      Джордж Чёрч [George Church] возвышается над большинством людей. У него длинная серая борода волшебника Средиземья, а работа всей его жизни...

Читать далее

Клеточная терапия без клеток: омоложение внеклеточными везикулами

  Восстановление сердечной мышцы после месяца терапии внеклеточными везикулами. Иммунные метки: агглютинин (красный), тропонин (зеленый) и DAPI (голубой)   Исследователи Колумбийского университета, работающие...

Читать далее

Биологи впервые собрали мышиный «эмбрион» прямо из стволовых клеток

  Бластоциста состоит из внешнего слоя клеток, из которого развивается плацента, и внутреннего – будущего детёныша. Здесь и ниже иллюстрации Nicolas...

Читать далее

Способ борьбы со старением: обращение вспять процесса снижения концентрации НАД+

    Старение сопровождается развитием метаболических нарушений и дряхлением. Недавние исследования продемонстрировали, что снижение уровня никотинамидадениндинуклеотида (НАД+) – ключевой фактор замедления обменных процессов, связанного...

Читать далее

Лекарства от старения, и Где они обитают

Время напрямую людей не убивает, старение – это биологический процесс. Есть группа заболеваний, которые называют возраст-ассоциированными, или старческими. Основным фактором риска...

Читать далее

Создан микроскоп, позволяющий наблюдать за движением клеток внутри организма

Ученые из Медицинского института Говарда Хьюза усовершенствовали метод флюоресцентной микроскопии таким образом, что теперь с ее помощью можно снимать в...

Читать далее

Ученые имплантировали маленький человеческий мозг мыши

Имплантация органов и тканей – вещь в науке далеко не новая. Не первый день существуют и так называемые кортикальные наборы...

Читать далее

В человеческих клетках впервые обнаружена новая форма ДНК

Ученые из австралийского Института медицинских исследований Гарвана сообщили об открытии в клетках человеческого организма необычных структур ДНК – i-мотивов (intercalated-motif...

Читать далее

Нанонож лишнего не отрежет: хирурги тестируют точечную терапию рака

Самое распространенное среди мужчин онкологическое заболевание, рак простаты, которым страдает примерно четверть пациентов урологических стационаров, до недавнего времени лечили хирургически — удаляли...

Читать далее

В США впервые в мире провели комплексную пересадку пениса и мошонки

Врачам из больницы Джона Хопкинса (штат Мэриленд) удалось провести успешную комплексную трансплантацию пениса и мошонки. Операция длилась 14 часов, в...

Читать далее

Антиоксидант MitoQ омолаживает сосуды

Результаты, полученные исследователями университета Колорадо в Боулдере, работающими под руководством профессора Дага Силса (Doug Seals), еще раз подтвердили, что применение...

Читать далее

Эпидемия молодости: как прожить 120 лет и стать счастливым

    Около 5% нынешних молодых и богатых проживут 120 лет и дольше, считают биохакеры. Читайте, что для этого нужно делать. Осенью 2017...

Читать далее

Имплантация пигментного слоя сетчатки помогла сохранить зрение

    Борьба с заболеваниями, которые в той или иной степени угрожают жизни человека – одно из самых приоритетных направлений современной медицины...

Читать далее

В США протестировали мозговой имплантат для улучшения памяти

    Американские исследователи провели проверку имплантата-электростимулятора, призванного усилить память. В среднем способность к запоминанию слов удалось улучшить на 15%. Если технология пройдет...

Читать далее

Ученым впервые удалось воссоздать легочную ткань

    Лечение стволовыми клетками находит все большее применение в медицинской практике. Так, например, группа китайских ученых из Университета Тунцзи не так...

Читать далее

Ученые МИЭТа планируют начать серийное производство аппарата вспомогательного кровообращения для детей уже в этом году

    В 2012 году благодаря ученым нашего университета была осуществлена первая в России успешная операция по имплантации «искусственного сердца» человеку. К...

Читать далее

Первый шаг к тканеинженерным надпочечникам

    Исследователи лондонского университета королевы Марии, работающие под руководством доктора Леонардо Гуасти (Leonardo Guasti), использовали репрограммированные клетки для создания первого прототипа...

Читать далее
Image

Оцифровка пользователя, Моделирование, 3D-визуализация.

Создание подробной цифровой копии на основе данных из медкарты.

Анализ данных. Исправление показателей организма.

Image

Взаимодействие цифровых профилей с целью улучшения показателей.

Обмен знаниями, проведение общих исследований.

Загрузка личного аватара в 3D мир. Игрификация, соревнования.

Image

В разработке

  • Официальная страница о медицинских чат-ботах на сайте Сверхчеловечество.рф
  • Подробности разработки чат-бота для проекта "Карта управления возрастом" (для партнеров и разработчиков) здесь:
Image

Обзор мировых разработок по хранению данных в разработке

Хранилище данных для Электронной Медицинской Карты Управления Возрастом в разработке

Материалы по теме:

Image

Основное взаимодействие планируется производить посредством Социальной сети:

Также существует множество специализированных телемедицинских сервисов:

Image

Данный раздел находится в разработке и будет доступен после запуска Электронной медицинской Карты Управления Возрастом:

Image

Основной материал сайта по теме искусственного интеллекта в медицине здесь:

На основе данной статьи будет определяться разработчик искусственного интеллекта для данной системы управления возрастом.

Image

ВАШ ЛИЧНЫЙ ВКЛАД В БОРЬБУ СО СТАРЕНИЕМ

Скооперируйтесь с тысячами других участников и создайте любой проект в области антистарения, проведите научные исспедования

Площадка для создания и финансирования проектов. Официальная страница сайта Сверхчеловечество.рф для сбора средств на ускорение прогресса в области омоложения:

Image
Image

Основная страница сайта Сверхчеловечество.рф о создании и участии в клинических испытаниях терапий антистарения и отката возраста организма здесь: