Дом для бактерий, или что мы знаем о кожной микрофлоре

1444

Окружающий мир населен огромным количеством микроорганизмов. Невозможно даже представить себе бесконечное разнообразие, которое таит в себе мир микробов: их можно найти практически в любом месте на планете — в почве, воздухе, горячих источниках и водах Мертвого моря, и даже — в Арктических льдах. Однако и человеческий организм подобен обитаемой планете, населённой сотнями видов микроорганизмов. Исследования последних лет дают все основания говорить о том, что кожа человека обладает сложной и многогранной микробной флорой. В процессе длительного взаимодействия между организмом человека и бактериями из окружающей среды некоторые из них стали заселять различные «экологические» ниши на поверхности и в глубинных слоях кожи. Результатом этого процесса стал тонкий баланс в структуре и численности микробных популяций, определяющий нормальные или патологические состояния кожи.

 

Симбиоз или война?

Люди издавна сталкивались с проявлением жизнедеятельности микробов, отражающимся на состоянии их организма. И наряду с непрекращающейся борьбой с инфекциями, апофеозом которого стало создание многочисленных антибиотиков, они научились пользоваться и полезными свойствами некоторых бактерий. Например, уже в Древней Греции и Риме врачи для улучшения самочувствие заболевших и нормального развития детского организма рекомендовали употреблять кисломолочные продукты. Такой распространённый продукт, как йогурт (от турецкого — yoğurt — «сгущённое молоко»), по легенде был известен еще в Древней Фракии, а в Европу это слово пришло с Балкан в XVI веке. Для получения йогурта основным условием является ферментация молока с помощью специфических штаммов бактерий (Lactobacillus bulgaricus — болгарская палочка и Streptococcus thermophilus — термофильный стрептококк), которые должны сохраняться в живом виде в готовом продукте. Однако в далёком прошлом люди, безусловно, не подозревали, что вкусному и полезному продукту они обязаны крошечным микробам. И только в конце XVIII века итальянский аббат Ладзаро Спалланцани показал, что ферментация различных продуктов происходит вследствие попадания в субстрат микробов из окружающей среды. А в начале XX века Илья Мечников, получивший позднее совместно с Паулем Эрлихом Нобелевскую премию по медицине за «работы по иммунитету», высказал идею о том, что не все бактерии являются вредными для организма. Согласно его мнению, бактерии, живущие в кисломолочных продуктах и попадающие с пищей в кишечник, вырабатывают некие полезные вещества, которые противостоят преждевременному старению и способствуют долголетию. В 1936 Зобелл и Андерсен расширили теорию Мечникова, доказав существование в толстом кишечнике «микробной плёнки». Эти учёные постулировали, что в слизистой кишечника обитают популяции многих видов бактерий — целая экосистема, вовлечённая в процессы метаболизма и пищеварения. Позднее (в 50-х годах) появился термин «пробиотик» (антоним антибиотику) — продукт, стимулирующий развитие здоровой микрофлоры кишечника. А в последующие 20 лет научные исследования помогли установить существование сложного и динамического равновесия между функционированием кишечной микрофлоры и здоровьем организма [1].

В последние годы также стали изменяться представления и о кожной микрофлоре. Обычно бактерии, обитающие на коже, рассматривались лишь как потенциальный источник инфекций. Это сформировало представления о гигиене кожи, одним из основных постулатов которого стало стремление всячески её обеззаразить (вспомнить хотя бы различные антибактериальные мыла). Перед хирургическими операциями вообще рекомендовалось принимать чуть ли не душ из хлоргексидина для предотвращения возможных осложнений, что на самом деле неблагоприятно сказывается на состоянии кожи и практически бесполезно для профилактики [2]. Однако на сегодняшний день концепция существенно усложнилась. Например, появились данные о том, что кожные популяции бактерий контролируются средствами врожденного иммунитета — в частности, конститутивной экспрессией антимикробных пептидов (см. «Антимикробные пептиды — возможная альтернатива традиционным антибиотикам» [3]). Таким образом, модель взаимодействий между кожей и «непрошеными» гостями имеет долгие эволюционные корни и, по-видимому, закодирована в геноме.

Начиная с процесса рождения и последующего постнатального периода, кожа колонизируется огромным количеством микробов, многие из которых являются важными симбионтами человека. Их роль может заключаться в подавлении роста нежелательных патогенных бактерий, а также участии в переработке кожных белков, свободных жирных кислот и кожного сала. При этом кожа состоит из различных «экологических ниш», для которых характерны широкие диапазоны pH, температуры, влажности и уровня секреции сальных желез, что играет непосредственную роль в развитии сложной микробной экосистемы [4]. Кроме того, определённые кожные структуры, такие как волосяные фолликулы и различные железы, могут обладать своей собственной уникальной флорой. Помимо этого важными факторами являются пол, генотип и иммунный статус хозяина, и даже активность, с которой он пользуется различными косметическими средствами [5]. Все это определяет численность и видовой состав микробных популяций. Существует много доказательств в пользу влияния состояния микрофлоры на развитие ряда не инфекционных кожных заболеваний, таких как атопический дерматит, розацея, псориаз и акне [4]. При этом заболевание может являться следствием лишь небольших изменений в «кожной микроэкологии» [5]. Собственная микрофлора также может стать патогенной, снижая защитную функцию кожного барьера. Это, в свою очередь, определяет важность накопления знаний о качественном и количественном составе микрофлоры здоровой кожи, что в будущем обеспечит появление новых и эффективных методов терапии.

Картирование кожи

До недавнего времени знания о кожной микрофлоре могли быть получены только в результате искусственного культивирования микроорганизмов, несмотря на то, что не более 1% таких бактерий вообще поддаются культивированию. Однако применение современных молекулярно-биологических методов существенно расширило возможности исследователей. Гены малой субъединицы рибосомы (16S рРНК) имеются у всех прокариотических клеток, и при этом содержат видоспецифичные вариабельные участки. Использовании техники ПЦР (полимеразой цепной реакции) позволяет амплифицировать такие гены в пробирке и получать информацию о видовом составе исследуемой микробной популяции. Подобная методика недавно позволила получить важную информацию о высокой гетерогенности микрофлоры, собранной из мазков в области запястья [5]. В данном исследовании также было показано, что видовой состав микрофлоры не является постоянным для каждого из волонтеров и может быстро изменяться в течение короткого промежутка времени. Однако используя только образцы с поверхности кожи, невозможно детально изучить распределение микроорганизмов в её более глубоких слоях. Поэтому необходимо применять дополнительные проникающие методики и анализировать соскрёбы и материалы инвазивной биопсии (рисунок 1), которая, впрочем, имеет ограничения, поскольку такой метод может оставлять кожные дефекты, и поэтому применим только на малозаметных участках кожи испытуемых добровольцев. В целом, использование подобного комплексного подхода, сочетающего медицинские и молекулярно-биологические подходы, позволяет проводить картирование кожной микрофлоры не только на различных участках поверхности эпидермиса, но и в глубине нижележащих слоев.

Fig.1

Рисунок 1. Многообразие бактерий на разной глубине кожи. Слева: На срезе кожи показаны области, из которых получают образцы микрофлоры для генетического анализа: 1 — мазок с поверхности, 2 — соскрёб верхнего слоя эпидермиса, 3 — инвазивная биопсия. Справа: Диаграмма Венна, иллюстрирующая видовые перекрывания популяций бактерий, полученных из образцов разных типов. Видно, что из 113 видов, общими для всех областей являются 36. Это соответствует 97.2% от всей полученной бактериальной ДНК. Рисунок подготовлен по материалам [4].

Триллионы соседей

Согласно современным исследованиям, микроорганизмы, обитающие в коже и других тканях тела, превосходят по численности клетки человеческого организма в десятки раз. Они образуют динамически развивающиеся сообщества, которые способны регулировать наше развитие, сопротивление инфекциям и усвоение питательных веществ. По словам исследовательницы многообразия микробной микрофлоры Джулии Сегрэ (Julie Segre) из Национального института геномных исследований в Мэриленде: «Люди представляют из себя амальгаму из человеческого и бактериальных геномов» [6]. Безусловно, необходимо познакомиться со своими соседями поближе. Понимая всю важность этого, Национальный институт здоровья США запустил в прошлом году Проект Человеческого Микробиома (Human Microbiome Project) с объемом финансирования более 100 млн. $, выделив его в приоритетное направление научных исследований. В рамках этого проекта планируется провести секвенирование геномов более 600 видов бактерий — симбионтов человека. Это будет составлять 99% известных бактерий, не поддающихся культивированию, однако в изобилии населяющих кожу, нос, кишечник, ротовую полость и влагалище. Очевидно, наибольший интерес представляет именно «здоровая» микрофлора.

Картирование микробных популяций внутри и на поверхности кожи, численность которых в норме достигает триллионов, является одной из наиболее важных задач, поскольку до сих пор люди знали об этом крайне мало. Первые шаги в этом направлении позволили получить весьма интересные результаты. Оказывается, бактерии заселяют кожу крайне неоднородно — есть области, которые выглядят настоящими микробными пустынями (между пальцев ног) по сравнению, например, с носовой полостью или пупком [6]. Было обнаружено, что ряд бактерий, для которых обычной средой обитания считалась почва, с удовольствием обитают и в здоровой коже, сосуществуя в гармонии с людьми [4]. В этой работе исследовали участки кожи пяти здоровых добровольцев в области локтевой ямки правой и левой рук. Этот участок кожи был выбран не случайно, как это может показаться сначала: у людей, страдающих экземой, часто именно в этой области развиваются симптомы. Была использована описанная выше комплексная методика, которая позволяет изучать распространение бактерий вдоль всей толщины кожи. Из полученных образцов исследователи выделили более 5300 генов малой субъединицы рибосомы (16S рРНК), относящихся к 113 различным видам бактерий (рисунок 1). Годом ранее сходное многообразие было найдено и при исследовании участков запястья [5]. Однако по численности популяции среди 113 лидируют всего десять видов бактерий, на которые приходится 90% полученной генетической информации. Например, более 60% всей выделенной ДНК составляют рибосомальные гены рода Pseudomonas. Это грамотрицательные бактерии, обитающие в почве, воде и разлагающихся органических остатках. Следующими по распространённости (20% генов) являются бактерии из рода Janthinobacterium — представители почвенных и водных грамотрицательных бактерий. Ранее эти микроорганизмы не относили к кожным симбионтам. Несмотря на некоторые индивидуальные отличия, обнаруженные у добровольцев, в целом для их локтевых образцов характерен близкий бактериальный отпечаток. Также интересно, что плотность бактерий во внутренних слоях кожи составила 1 млн. на квадратный сантиметр, по сравнению с 10000 — по данным с соскрёбов. Ранее предполагалось, что внутри кожи бактерий окажется гораздо меньше.

О мышах и людях

Изучение структуры кожной микрофлоры у человека и животных позволяет сделать важное открытие, что симбиоз между организмом и бактериями развивался в течение длительного периода эволюции, и является прямым следствием адаптации к окружающей среде. Так, было показано, что видовой состав бактерий, полученный из кожных образцов мышей в области уха, во многом напоминает кожную микрофлору локтевой ямки человека (рисунок 2) [5]. Это говорит в пользу того, что бактерии не случайным образом расселяются на коже, и только определенные их виды смогли выработать «добрососедские» отношения со своими хозяевами, не подвергаясь агрессивному воздействию их иммунной системы. Кроме того, подобное открытие позволяет создать новые стратегии в изучении различных кожных заболеваний человека с использованием мышиных моделей. Например, существует специальная линия мышей (St14hypo/−), у которых отсутствует филаггрин — белок, играющий ключевую роль в формировании корнифицированного эпителия и образовании эпидермального барьера, защищающего организм от действия различных патогенов. Для них было показано, что симптомы, сходные с атопическим дерматитом, могут быть вызваны определёнными изменениями в структуре кожной микрофлоры. Отсутствие филаггрина у человека также часто ведет к развитию умеренной или выраженной формы заболевания [7]. Таким образом, и у мышей, и у человека за развитие кожных патологий могут быть ответственны сходные генетические механизмы в совокупности с влиянием кожной микрофлоры.

Fig.2

Рисунок 2. Доля разных бактерий в общей популяции, полученной из образцов биопсии человека (Ч, локтевая ямка) и мыши (М, ухо). Выделенные гены 16S рРНК были сгруппированы по таксономическим классам. Доминирующие рода в каждом классе подписаны. Рисунок адаптирован из [4].

Йогурт для кожи

Новые исследования порождают и массу новых вопросов. Какую физиологическую функцию выполняет кожная микрофлора и как она влияет на функционирование кожи? Закодирована ли структура микробной популяции в геноме хозяина? Каким образом лекарственные препараты, одежда, пол, возраст, окружающая среда, а также бесчисленное множество других факторов влияют на кожную микрофлору? Учёным ещё только предстоит ответить на эти вопросы. Тем не менее, представители косметической индустрии уже увидели для себя новую сферу приложения интересов. Действительно, если нарушен микробный баланс, то почему бы не восстановить его, подселив на кожу «правильные» бактерии? Пробиотики активно применяются для восстановления микрофлоры кишечника и влагалища [8]. Появляются и косметические препараты, в которых эксплуатируется идея пробиотиков, действующих на кожу. Например, капсулы Innéov Solaire (Nestle), которые повышают защиту кожи от солнечных лучей. Однако создание косметических средств, действительно способных влиять на качество кожной микрофлоры — задача, требующая ещё многочисленных исследований. Возможно, их результатом в будущем станет появление новых чудо-йогуртов, которые сделают нашу кожу по-настоящему красивой и здоровой.

Источник: biomolecula.ru

Биологи создали нелысеющих мышей

70a86807341de13bb37511242ffeadeb

Волосяной покров у трансгенных мышей, у которых усилена экспрессия гена, кодирующего коллаген 17 типа, (слева) и обычных мышей (справа).

 

Японские ученые обнаружили, что потеря волос связана со снижением выработки коллагена в эпидермальных стволовых клетках. Искусственное увеличение выработки коллагена позволило вывести линию мышей, у которых возрастная потеря волос была в несколько раз меньше, чем у обычных грызунов. Результаты работы были опубликованы в журнале Science.

По гипотезе ученых, за старение корней волос отвечают эпидермальные стволовые клетки. Исследователи решили исследовать активность генов, которые могли быть задействованы в процессе старения фолликул, чтобы точно определить механизмы, задействованные в выпадении волос.  

В качестве показателя возрастных изменений волосяного покрова авторы статьи использовали степень истончения фолликул. С помощью методов иммуногистохимии ученые определили активность генов, вовлеченных в поддержание состояния плюрипотентности стволовых клеток фолликула, включая те, что кодируют коллаген 17 типа. 

Оказалось, что по мере старения в эпидермальных стволовых клетках происходило снижение активности генов, отвечающих за плюрипотентность. При этом снижение происходило еще до того, как становились заметными возрастные изменения в корнях волос. Интересно, что старение было связано не с гибелью клеток фолликула, а именно с потерей стволовых клеток, которые дифференцировались и уже переставали быть стволовыми. Данные иммунофлуоресцентного анализа показали, что старые стволовые клетки постепенно перемещались к поверхности кожи, проходя эпидермальную терминальную дифференцировку и теряя свою плюрипотентность.

На причины таких изменений указывало то, что старые клетки отличались большей активностью генов, участвующих в защите от стресса, тогда как молодые — активностью генов, отвечающих за репарацию (восстановление) ДНК. В результате снижения работы репаративных генов у стволовых клеток начинают накапливаться мутации. Однако ключевое открытие заключалось в том, что для старых клеток было характерна меньшая активность генов, кодирующих коллаген 17 типа.

Чтобы доказать, что именно этот коллаген является основным фактором старения фолликул, ученые получили трансгенных мышей с увеличенной активностью генов, кодирующих данный белок. Животные демонстрировали явное замедление старения фолликул и снижение темпов выпадения волос. 

Волосяные фолликулы представляют собой мини-органы в тканях кожи, состоящие из различных клеток, которые образуют сальные и потовые железы, волосяные сосочки со стволовыми клетками и другие структуры. Волосяной фолликул находится в состоянии постоянного обновления в ходе непрерывных циклов, которые сменяют друг друга и обусловливают рост волос.

Источник: nplus1.ru

Успех в борьбе с лейкозом: на шаг ближе к клиническому применению геномного редактирования

Генетическую инженерию иммунных клеток успешно применили для борьбы с лейкозом. В этой статье рассказывается, какие генетические технологии помогут бороться с тяжелыми болезнями, если общество проникнется к передовым методикам бόльшим доверием.

leikozGen

 

В начале ноября 2015 года каждое уважающее себя издание написало об успешном излечении от лейкоза годовалой девочки Лейлы Ричардс [1–3]. Острый лимфобластный лейкоз плохо поддается лечению у таких маленьких детей, и обычная химиотерапия помогает им лишь в 25% случаев. Когда стало ясно, что химиотерапия не справилась, родители девочки начали настаивать, чтобы врачи не ограничивались стандартными методиками, а попробовали все возможные способы для ее спасения. Доктора связались с учеными, разработавшими экспериментальную терапию лейкоза, основанную на генетической модификации иммунных клеток. Технология мало того что применяла генную инженерию, к которой с таким опасением относится общественность, так еще и была опробована только на мышах. Членам комиссий по биоэтике и в страшном сне не может присниться одобрение такой методики для массового применения. Но случай Лейлы был исключением, потому что отработанными методами помочь ей уже точно не получалось. Девочке уже нечего было бы терять, и, если бы новый метод не помог ей резко пойти на поправку, мы бы никогда не услышали ее историю, как не слышим истории сотен тысяч других больных раком, которым не помогли никакие методы лечения.

И терапия сработала. Иммунные клетки донора модифицировали таким образом, чтобы они, во-первых, активно атаковали опухолевые клетки того типа рака, что диагностировали у Лейлы, а во-вторых, не причиняли вреда ее здоровым клеткам. Кроме того, модификации генома сделали донорские клетки устойчивыми к лекарствам, которые пациентка для страховки продолжала принимать, хотя они и не действовали на нее достаточно эффективно. Модифицированные иммуноциты донора помогли уничтожить опухолевые клетки и при этом не нанесли вреда здоровым тканям*. Когда все признаки присутствия опухоли пропали, Лейле пересадили подходящий донорский костный мозг, который начал производить новые клетки иммунной системы, сходные с ее собственными. Вновь заработавшая иммунная система уничтожила генетически модифицированные клетки, выполнившие свою задачу.

* — Перспективы и ценность такой терапии очевидны: острый лимфобластный лейкоз со временем развивается у одного из двух тысяч новорождённых, а у взрослых пациентов прогноз заболевания еще хуже, чем у детей. А ведь есть еще и другие виды лейкемии, и другие онкозаболевания, вероятно, поддающиеся напору «дизайнерских» иммуноцитов. В случае Лейлы пришлось получать эксклюзивное разрешение на применение технологии, тем не менее уже в следующем году та же группа врачей планировала проверить безопасность метода на первых 10–12 пациентах. Судя по всему, история Лейлы станет серьезным стимулом для дальнейших клинических исследований, а главное — для соответствующего бюрократического аппарата: о первой победе теперь узнали десятки тысяч больных и их близких, игнорировать их интересы будет нелегко. — Ред.

Этот случай — не первый, когда генное редактирование применяли у людей. Подобные технологии уже использовали в прошлом году, чтобы повысить устойчивость к вирусу иммунодефицита у нескольких ВИЧ-инфицированных [4]. Тот эксперимент тоже оказался удачным и улучшил показатели иммунитета пациентов. Тем не менее первый эпизод не вызвал такого общественного резонанса, как излечение Лейлы. Вероятно, здесь сыграла роль история маленькой больной девочки, которую терапия спасла от смерти буквально в последний момент. В первом же случае не было риска скорой смерти пациентов, которые к тому же были взрослыми.

Можно долго обсуждать, какие компоненты необходимы, чтобы привлечь к истории внимание публики, но в любом случае громкий успех генетической инженерии человеческих клеток очень важен для исследователей, разрабатывающих новые технологии. Благодаря этой счастливой истории, человечество еще на шаг приблизилось к медицине из фантастических романов. Самое интересное, что многие из технологий медицины будущего уже разработаны, но далеко не везде разрешены правительствами, одобрены комиссиями по этике или хотя бы вызывают доверие у простых граждан.

Компания Cellectis, создавшая клетки, которые вылечили острый лимфобластный лейкоз Лейлы, разрабатывает и другие полезные клеточные линии. Каждая из них нацелена на молекулы, характерные для определенного типа рака — к примеру, острого миелоидного лейкоза и миеломной болезни [5]. Сегодня мало кто верит, что возможно создать лекарство от всех видов рака, но Cellectis планирует выпустить целый арсенал иммунных клеток, подходящих для лечения различных его типов. Клеточные линии Cellectis — это наиболее мягкий вариант генно-инженерной терапии человеческих патологий, поскольку такие клетки применяются только для того, чтобы разобраться с проблемой, а затем уничтожаются иммуноцитами пересаженного костного мозга. В этом смысле первый эксперимент по применению генной терапии к ВИЧ-инфицированным выглядит более радикальным: тогда изменяли собственные клетки крови пациентов, которые после модификации и возвращения в кровоток не планировалось оттуда удалять [6]. На самом деле ученые даже рассчитывали, что модифицированные клетки в теле испытуемых размножатся, поскольку будут устойчивы к ВИЧ. Эти ожидания оправдались. Компания Sangamo, разработавшая терапию против ВИЧ, сообщает, что половина из дюжины участников первого эксперимента уже прекратили принимать противовирусные препараты, при этом их уровень Т-клеток, которые раньше атаковал вирус, остается высоким. Сейчас Sangamo дополнительно проверяет свою технологию еще на 70 пациентах [3].

В двух описанных экспериментах генетические модификации проводили вне организма пациентов: брали их собственные клетки или клетки доноров, изменяли ДНК и лишь потом вводили модифицированные клетки людям. Но таким способом можно победить далеко не все болезни. Во многих случаях дефектные клетки входят в состав органов, которые не получится безболезненно извлечь из тела пациента, а потом вернуть обратно. Чтобы лечить такие заболевания, потребуются действительно прогрессивные методы, с помощью которых можно будет изменять геном клеток прямо в составе организма. Для этого инструменты, модифицирующие гены (CRISPR, TALEN или системы, использующие белки с доменом «цинковые пальцы»*), необходимо разнести по множеству клеток организма (в идеале — по всем дефектным клеткам). И эта задача была бы крайне сложной, не будь природных систем проникновения в клетки и доставки туда ДНК — вирусов. Модифицированные вирусы, нацеленные на определенные типы клеток, уже довольно эффективны: в некоторых случаях им удается достичь 40% всех клеток-мишеней [7]. Если целью выбирают «больные» клетки, то даже такая эффективность при очень многих заболеваниях позволяет улучшить состояние пациентов. Например, исследователям из Университета Дьюка удалось существенно улучшить состояние мышей с мышечной дистрофией — притом что эффективность доставки системы, которая редактировала мутацию в генах мышечных клеток мышей, составила всего 20% [3]. А компания Editas собирается использовать подобную технологию для редактирования генов клеток сетчатки, чтобы лечить глазные болезни [8].

* — Системы редактирования ZFN, TALEN и CRISPR/Cas9 выделяются тем, что основаны на сайт-специфическом действии разного типа нуклеаз in vivo: «А не замахнуться ли нам на... изменение генома?» [9], «CRISPR-системы: иммунизация прокариот» [10], «Мутагенная цепная реакция: редактирование геномов на грани фантастики» [11]. Кстати, донорские Т-клетки, спасшие Лейлу Ричардс, модифицировали с помощью нуклеазы TALEN, а ДНК Т-хелперов ВИЧ-инфицированных обрабатывали ZFN (нуклеазой «цинковые пальцы»). Редактирование происходило ex vivo. — Ред.

Помимо непосредственной атаки дефектных клеток, болезни можно лечить и другим способом. В качестве мишеней можно использовать здоровые клетки организма, заставив их производить необходимые для лечения белки. Чтобы полезного белка образовывалось много, нужно вставлять его ген в такое окружение, чтобы он активно работал. Sangamo предлагает использовать в качестве такого места ген альбумина — белка крови, который в больших количествах нарабатывается в печени. Исследователи уже пробовали вставлять в локус альбумина макак ген фактора свертывания крови IX, из-за недостатка которого развивается гемофилия B*. В результате печень обезьян начала вырабатывать значительно больше этого фактора: его уровень в крови животных поднялся на 10%. Руководитель проекта Федор Урнов сравнил ген альбумина с USB-портом генома, видимо, подразумевая, что в этот участок удобно «подключать» новые носители информации — гены, — поскольку там они точно будут работать активно. Вставляя «правильные» варианты генов в локус альбумина, исследователи из Sangamo собираются лечить и другие болезни — к примеру, нарушения синтеза гемоглобина [3].

* — Само заболевание и эксперимент по его генетической терапии у мышей (с использованием того самого гена, вернее, очень уж активного промотора гена альбумина) подробно описаны в статье «Сводка с генотерапевтических фронтов. Новая стратегия нейтрализации гемофилии» [12]. Рассматриваемый способ позволяет избавиться от многих рисков редактирования генома in vivo. — Ред.

По сравнению с применением модифицированных клеток крови, которые при необходимости можно убрать из организма (что и произошло с модифицированными иммуноцитами после того, как они справились с лейкозом Лейлы), модифицировать клетки в составе органов намного рискованнее. Во-первых, крайне трудно гарантировать, что вирусные векторы, используемые для доставки систем модификации генов, не проникнут куда-то еще, кроме клеток-мишеней. В некоторых случаях модификация лишних клеток может быть опасной: к примеру, если целью являются клетки опухоли, которые нужно заставить прекратить деления, а модифицируются заодно и стволовые клетки, деления которых очень важны для здоровья организма. Другой важный момент — способность вирусных векторов долго оставаться в состоянии боевой готовности. В теории такие модифицирующие агенты могут сохранять активность годами, что не всегда полезно. Наконец, системы генетической модификации, не похожие на родные белки организма, могут вызывать иммунный ответ, что в сочетании с долгим сроком жизни агентов доставки ДНК может привести к хроническому воспалению и другим неприятным патологиям иммунитета.

В общем, биоинженерам еще есть над чем работать, но каждый удачный эксперимент, особенно на людях, повышает доверие общественности к их разработкам, и стимулирует ученых тянуть наш мир в будущее еще активнее.

Источник: http://biomolecula.ru/content/1853

 

 

Читайте по теме: ГЕННАЯ ТЕРАПИЯ

 

 

НОВОСТИ ГЕНОМА

Ученые нашли генетические причины возрастного облысения

4429436771 5ea0376921 b

Проведя ряд экспериментов с мышами, международная команда ученых выяснила, что причина возрастного облысения лежит в генетике. С возрастом повреждается ДНК стволовых клеток, особенно при этом страдает ген COL17A1, который влияет на выпадение волос.

Как сообщает портал EurekAlert, чтобы выяснить причину облысения в пожилом возрасте, международная группа ученых провела ряд экспериментов с участием мышей.
Исследователи взяли несколько особей грызунов в возрасте до восьми недель и начали отслеживать возрастные изменения в их организме. Первые признаки ухудшения волосяного покрова появляются уже через 16 месяцев после рождения, становятся более заметными к 18 месяцам и совсем очевидными – к двухлетнему возрасту.
 
После наблюдения за грызунами ученые выяснили, что старение, связанное с сокращением стволовых клеток волосяного фолликула, привело к уменьшению площади волосяного покрова и истончению волос. Генетики установили, что изменения в фолликулах у людей протекают схожим образом. По мнению ученых, выпадение волос происходит из-за того, что повреждается ДНК стволовых клеток. В частности, меняется активность гена COL17A1, кодирующего один из трансмембранных белков, который обеспечивает процесс передачи питательных веществ через клеточную мембрану. 

Еще новости на тему облысения:

Ученые выяснили, что именно активирует рост волос

Биологи обвинили стволовые клетки в возрастном облысении мужчин

Преодолевшие старение. Часть II. Дети подземелья

Человек живет долго. С каждым десятилетием всё дольше. Но у него есть медицина. Слон живет столько же, а кит гораздо дольше — не пользуясь системой здравоохранения. Но они большие... Недавно человеку посчастливилось поближе познакомиться с очень маленьким и очень странным долгожителем. Он обитает в душном подземелье, не поддерживает постоянную температуру тела, формирует касты — как муравей. Подслеповат, как крот, голокож, как человек. Вот, пожалуй, и все аналогии. Дальше — сплошная уникальность. Не чувствует ожоги, не знает, что такое рак, атеросклероз и нейродегенерация, не проявляет классических признаков старения, переживает 30-летний рубеж... будучи мелким грызуном. С какими же секретами голого землекопа и его пушистых родственников-долгожителей предстоит работать человеку, чтобы продлить собственную здоровую жизнь?

Zemlekop

О феномене пренебрежимого старения и перспективах изучения животных, его демонстрирующих, речь шла ранее: «Старческие капризы природы: почему люди прекращают стареть, а мыши не успевают жить» и «Преодолевшие старение. Часть I. Кому выпал эволюционный джекпот?». Пожалуй, к самым интересным объектам биогеронтологических изысканий можно отнести млекопитающих, стареющих чрезвычайно медленно или почти не стареющих в человеческом понимании этого процесса. Но если экспериментировать с крупными, живущими более 100 лет организмами нереально, то мелкие, быстро размножающиеся и формирующие крупные популяции в естественных условиях и неволе животные были бы настоящим подарком для ученых.

И похоже, подходящих кандидатов уже нашли: долгой для своей весовой категории жизнью славятся некоторые роющие («подземные») грызуны, относящиеся к семействам Spalacidae (слепыш) и Bathyergidae (дамарский землекоп и голый землекоп, хотя последний стои́т на пороге выделения в семейство Heterocephalidae [3]). Эти животные (рис. 1) лишь изредка покидают душные и тесные системы подземных ходов и камер, то есть испытывают хронический дефицит кислорода и мирятся с избытком аммиака, углекислого газа и продукта его взаимодействия с водой — угольной кислотой. Условия можно назвать экстремальными, но относительно стабильными и выгодными с точки зрения безопасности: встречи с хищниками чрезвычайно редки. Ничтожность влияния врагов и негативных «наземных» экофакторов на мир этих грызунов эволюция учла, отобрав признаки, способствующие долгой здоровой жизни в условиях пониженной комфортности: замедленный обмен веществ, устойчивость к стрессам, раку, нейродегенерации.

Три землекопа

Рисунок 1. Три подземных «богатыря». Слева направо: чемпион по продолжительности жизни — голый землекоп (Heterocephalus glaber, максимальная продолжительность жизни (МПЖ) превышает 32 года), слепыш (Spalax judaei, МПЖ 21 год) и дамарский землекоп (Fukomys damarensis, МПЖ в неволе 20 лет). Фотографии с сайтов www.lpzoo.org, www.paratiritis-news.com, www.houstonzoo.org соответственно.

Особенно сильно природа поэкспериментировала над голым землекопом (см. врезку «Досье на голого землекопа»), обитателем восточноафриканских полупустынь и обладателем исключительного для млекопитающих плато на кривой смертности (рис. 2) [1]. А человек решил извлечь из этого пользу, изучив условия жизни грызуна и связав их с его уникальными свойствами.

Кривая смертности голого землекопа

Рисунок 2. Иллюстративная кривая смертности голого землекопа. По оси ординат отложена вероятность умереть в течение года, плато отражает стабилизацию уровня смертности. Голый землекоп живет на порядок дольше мышей, проявляя признаки пренебрежимого старения. Кривая его смертности далека от «классической» экспоненты: у представителей разных возрастных когорт этого грызуна (кроме детской) почти равная вероятность умереть в течение года. Для описанных в научных статьях популяций плато точно пересекает 20-летний рубеж. Рисунок с сайта nestarenie.ru (из лекционных материалов П. Федичева).

Досье на голого землекопа (Heterocephalus glaber, naked mole-rat)

Место обитания: Восточная Африка (юг Эфиопии, Кения, Сомали).

Максимальная продолжительность жизни: более 32 лет при длине тела 8–10 см (мышь или крыса редко преодолевает четырехлетний рубеж).

Общественное устройство: колониальные эусоциальные животные. Голый и дамарский землекопы — единственные известные эусоциальные позвоночные: с кастами (открытыми, возрастзависимыми), межкастовым разделением труда и доступа к размножению, коллективной заботой о потомстве. Колония обычно состоит из нескольких десятков рабочих особей, размножается же только главная самка, царица — с помощью 1–3 фаворитов. Рабочие особи не проявляют гендерных различий.

Жилищные условия: система залегающих на глубине до двух метров ходов, соединяющих гнездовые камеры, «столовые» и «общественные туалеты» (рис. 3). При среднем диаметре 4 см общая протяженность туннелей колонии может достигать нескольких километров.

Питание: вегетарианское (рис. 3). В воде не нуждаются, из подземных частей растений предпочитают сочные луковицы и клубни: полутораметровый в диаметре клубень кустарника пиренаканта может на несколько месяцев решить продовольственный вопрос для всей колонии. В неволе соглашаются потреблять фрукты и овощи. Не пренебрегают и собственными фекалиями (кишечная микрофлора, очевидно, играет далеко не последнюю роль в поддержании их недюжинного здоровья).

Приметы: Самые «лысые» из сухопутных животных; имеют слабое черно-белое зрение; общаются с помощью широкого диапазона звуковых сигналов; туннели роют зубами.

Особые приметы (которых нет у других грызунов-долгожителей): Не способны поддерживать постоянную температуру тела — единственные среди млекопитающих (видимо, из-за изменений белка термогенина и отключения рецепторов мелатонина — регулятора циркадных ритмов и температуры тела). Не чувствуют боли при химических травмах кожи. С-волокна (тонкие аксоны) кожи, глаз и носа землекопа из-за мутации гена TAC1 не производят вещество P — нейропептид, передающий импульсы от рецепторов в мозг. Вклад в нечувствительность могут вносить и мутации генов нейропептида CGRP и канального белка нейронов Na(V)1.7. Компенсация мутации TAC1 восстанавливает способность ощущать жжение от капсаицина [4, 5]. Обладают устойчивым к окислению β-актином и практикуют особый процессинг 28S рРНК [6].

Приметы, особо ценные для геронтологических исследований: не страдают от рака, деменций и последствий атеросклероза, легко справляются с гипоксией и окислительным стрессом, ну и... почти не стареют. Их смертность не растет с возрастом, способность к размножению не снижается [7], возрастные изменения в биохимии и физиологии минимальны: только ближе к 30 годам снижается мышечная и жировая масса, в тканях откладывается липофусцин и возникают локальные инфаркты (гистологические находки, не проявляющиеся клинически), страдает сетчатка и начинает развиваться катаракта (что зверек вряд ли замечает). Если бы Homo sapiens старел эквивалентно землекопу, то биологический возраст 80-летнего человека не превышал бы 30 лет.

Признание в научной среде: «Позвоночное года — 2013» по версии журнала Science; изучение голого землекопа — одна из 25 научных идей продления жизни фонда поддержки научных исследований «Наука за продление жизни» [8].

Образ жизни голого землекопа

Рисунок 3. Образ жизни голого землекопа. Слева — Жилище (система подземных туннелей и камер). Рисунок Логан Парсонс для журнала The Scientist, шкала и аннотация — согласно The Scientist. Справа — Обед в неволе.

Кому, как не голому землекопу, нужно было уделить внимание в поиске факторов долгожительства? И с чего начать, как не с прочтения его генома? Однако биологи поступили разумно: кто-то секвенировал и сравнивал результаты с другими животными, кто-то погрузился в изучение уникальных «устойчивостей» землекопа. А некоторые команды сконцентрировались на подобных свойствах другого роющего грызуна — слепыша — и тоже не разочаровались.

Молекулярный фундамент долголетия землекопов

Еще в начале 1990-х ДНК-фингерпринтинг выявил крайне низкое генетическое разнообразие внутри колоний голого землекопа — примерно как у однояйцевых близнецов. Это закономерное следствие инбридинга, не снижающего, однако, жизнестойкости потомства. Потому вполне вероятно, что морфологические различия между особями формируются эпигенетическими механизмами, но какими — пока не известно. Геном голого землекопа впервые секвенировали в 2011 году [9, 10]. Оказалось, что при общем высоком сходстве с ДНК мышей и крыс (даже в порядке расположения генов) он обладает и рядом особенностей. Ниже перечислены те из них, которые могут иметь отношение к долголетию этого грызуна и потому требуют усиленного изучения (см. врезку «Геном голого землекопа»).

Теоретически вклад в долголетие голого землекопа могут вносить любые, если не все генетические особенности, связанные с работой митохондрий и моделированием теломер, с обменом и утилизацией макромолекул, балансом метаболических процессов и темпами деления клеток. И продлять жизнь они могут в том числе посредством устойчивости к раку и нейродегенерации.

У истоков исключительности: геном голого землекопа

  1. Мобильные генетические элементы составляют всего 25% генома землекопа (у крысы — 35%, у человека — 40%).
  2. Среди генов, утративших актуальность для землекопа и сильно мутировавших (псевдогенов), преобладают связанные со зрением, обонянием, сперматогенезом и убиквитинированием белков. Последний процесс готовит ненужные по каким-то причинам молекулы к уничтожению протеасомами — выдает им «билет в один конец» [11]. Эта генетическая особенность землекопа подтверждается и в исследованиях его метаболизма: потребность в убиквитинировании у зверька снижена.
  3. Среди генов, подвергавшихся действию положительного отбора у землекопа по сравнению с крысами и мышами, обнаружены TEP1 (ген ассоциированного с теломеразой белка 1, регулирующего активность теломеразы) и TERF1 (ген связывающего теломерные повторы фактора 1, препятствующего надстройке теломер), участвующие в регуляции длины теломер, а следовательно, в репликативном старении клеток [12, 13]. (Здесь нужно отметить, что ген обратной транскриптазы TERT — каталитической субъединицы теломеразы, достраивающей теломеры — у голого землекопа экспрессируется в любом возрасте, хотя сами теломеры относительно короткие и активность теломеразы невысока.) В более позднем и масштабном исследовании транскриптомов разных африканских землекопов изменения гена TERF1 не сочли специфичными для них, хотя подчеркнули возможную значимость для долголетия землекопов изменений других генов, связанных с работой теломеразы и стабильностью хромосом, а также генов рецепторов, задействованных в секреции гормона роста и контроле метаболизма — GHRHR и GHSR. Не менее существенными могут быть и адаптации гена — супрессора опухолей BRCA1 и других компонентов BRCA-сети [14].
  4. У землекопа в течение жизни стабильна экспрессия большинства генов, с годами меняющих активность у людей и «обычных» грызунов. В частности, у землекопа не возрастает активность генов, связанных с деградацией макромолекул: GSTA1 (ген глутатион-S-трансферазы α1, метаболизирующей билирубин, канцерогены, продукты окислительного стресса), DERL1 (ген дерлина-1, одного из участников ассоциированного с эндоплазматическим ретикулумом пути уничтожения дефектных белков) и GNS (ген N-ацетилглюкозамин-6-сульфатазы, обеспечивающей лизосомную деградацию гепарансульфата, компонента внеклеточного матрикса). Не снижается у землекопа активность генов NDUFB11, ATP5G3 и UQCRQ, кодирующих митохондриальные белки, что подтверждает данные о пожизненной стабильной работе его «энергетических фабрик».
  5. Некоторые гены в мозге Heterocephalus glaber с годами работают даже интенсивнее, в то время как их человеческие гомологи, наоборот, ленятся. Это касается, например, генов CYP46A1 и SMAD3. Продукт первого из них — нейронная холестерол-24-гидроксилаза — обеспечивает выведение из мозга излишков холестерина, что препятствует агрегации β-амилоида и прогрессированию болезни Альцгеймера [15]. Белок SMAD3 — модулятор транскрипции в сигнальном пути TGF-β, замедляющий деление клеток (в том числе раковых).

В 2014 году свет увидела усовершенствованная версия прочтения генома Heterocephalus glaber, анализ которой выявил уникальные адаптации ДНК землекопа в участках, кодирующих опухолевый супрессор p53 и рецепторы гиалуронана CD44 и HMMR (RHAMM) [16]. Авторы исследования создали портал Naked Mole Rat Genome Resource — в помощь биологам, желающим использовать данные по геному голого землекопа в своей работе.

В том же 2014 секвенировали геном другого африканского землекопа — дамарского (в лаборатории Fukomys damarensis (рис. 1) доживает до 20 лет) — и сравнили его с геномом землекопа голого, а также сопоставили транскриптомы этих двух и нескольких родственных им видов подземных грызунов. Так удалось выявить общие генетические особенности зверьков-долгожителей и уникальные адаптации Heterocephalus glaber (перечислены в досье) [6]. Некоторые геномные находки подтвердились при изучении белков и клеточной физиологии землекопов.

Итак, что же отличает африканских грызунов-долгожителей?

  1. Особенности структуры и мощный конститутивный синтез глобинов позволяют землекопам эффективнее снабжать мозг кислородом. Пожизненно высокий уровень фактора роста и дифференцировки нейронов нейрегулина-1 (NRG-1) в мозге землекопов-долгожителей («неафриканского» слепыша в том числе) может вносить определяющий вклад в поддержание синаптической пластичности и стабильной работы нервной системы — непременного условия активного долголетия. Показано, что нейрегулиновый сигналинг спасает нейроны от «тирании» нейротоксинов — внешних и внутренних (например, при накоплении амилоидов). Предполагают также, что фактор NRG1 способен снижать тревожность, «вмешиваться» в социальную жизнь и даже выполнять функцию опухолевого супрессора. Косвенным индуктором синтеза NRG1 служит гипоксия. У грызунов уровень синтеза нейрегулина-1 в мозжечке прямо коррелирует с максимальной продолжительностью жизни (МПЖ), а у людей нарушения NRG1-сигнализации сопутствуют шизофрении, рассеянному склерозу и болезни Альгеймера [17].
  2. Низкая биологическая активность инсулина (из-за радикальных изменений β-цепи) и утилизация глюкозы альтернативным путем (возможно, посредством инсулиноподобного ростового фактора IGF2, обычно работающего до рождения) могут способствовать долголетию. У голого землекопа уровень гликированного гемоглобина в течение жизни стабилен, диабет не встречается. Для этого грызуна характерен и слабый тиреоидный сигналинг, что неудивительно: трийодтиронин поднимает уровень глюкозы в крови, ускоряет метаболизм, повышает температуру тела и потребность тканей в кислороде. У землекопов же, живущих в условиях отвратительного газо- и теплообмена, картина обратная. Есть мнение, что низкая активность этого гормона может продлевать жизнь за счет снижения температуры тела, интенсивности основного обмена, проницаемости мембран и активности определенных сигнальных путей.
  3. Инактивация гена FASTK может частично защищать от рака, воспаления и клеточного старения. Продукт гена — киназа, сенсор митохондриального стресса. Ее избыток (в клетках опухолей и при хронических воспалениях) задерживает Fas-опосредованный апоптоз. Ее отсутствие снижает онкогенный потенциал, способствует росту и восстановлению нейронов (у людей эти процессы с возрастом замедляются).
  4. Интенсивная продукция активных форм кислорода (АФК) и закономерный окислительный стресс не мешают землекопам жить долго. И это несмотря на слабую экспрессию генов некоторых пероксиредоксинов и низкую активность глутатионпероксидазы 1 — стандартных ферментов-антиоксидантов. Частично объяснить этот феномен для голого (но не дамарского) землекопа может замена в его β-актине окисляемых аминокислотных остатков на неокисляемые. В этом случае актин не деполимеризуется, не меняются регуляторные процессы. Зато высокий уровень АФК и окисленный актин — типичная находка у пожилых и страдающих нейродегенеративными болезнями людей. Тем не менее у голого землекопа общий высокий уровень окислительных повреждений белков, некоторых липидов и ДНК не нарушает их функции и не увеличивается с возрастом (в отличие от мышей) [18]. Интересно, что подобные — противоречащие свободнорадикальной теории старения — данные были получены в экспериментах с дрожжами: ограничение калорий продляло им жизнь, хотя при этом клеточное дыхание усиливалось, и АФК производилось больше [19, 20]. Судя по всему, для продления жизни важнее не избегать окислительного стресса, а вырабатывать механизмы, амортизирующие его эффекты или активирующие пути защиты от других повреждений. Вероятно, активная аутофагия (а значит, поддержание высококачественного пула митохондрий и аминокислотного гомеостаза) и структурная стабильность белков — в их числе. Предполагают, что центральную роль в регуляции всего комплекса защитных механизмов у видов-долгожителей может играть постоянная активность сигнального пути Nrf2 (рис. 4), пересекающегося с системами p53 и NF-κB [21, 22]. Подтверждает это стабильно высокая Nrf2-сигнализация в тканях всех долгоживущих грызунов, причем продолжительность жизни коррелирует не с общим уровнем этого белка, а именно с его сигнальной активностью. Последняя регулируется белковыми «иудами» Keap1 и βTrCP (рис. 4) — именно с их уровнями обратно коррелирует МПЖ грызунов [22].
  5. Уникальный процессинг 28S рРНК голого землекопа, вероятно, вносит вклад в высокую точность трансляции и потрясающую стабильность протеома. Оказалось, что при сходной скорости трансляции количество ошибочно включенных аминокислот в фибробластах голого землекопа в четыре раза ниже, чем в мышиных. Не исключено, что особая, двухфрагментная, 28S рРНК меняет фолдинг или динамику большой субъединицы рибосомы, повышая тем самым точность трансляции и снижая количество аномальных белков. Для протеома этого грызуна характерны: устойчивость белков к денатурации, пожизненно невысокий уровень их убиквитинирования и повышающаяся с годами активность протеасом (у мышей, наоборот, доля «приговоренных к смерти» белков растет, и «палачи»-протеасомы с нагрузкой справляются хуже). Получается, что высокоточный синтез и эффективные шаперонные системы формируют «здоровый» протеом, предохраняющий клетку от накопления агрегатов и прочих возрастзависимых эффектов. А с поврежденными белками, видимо, неплохо справляются активные протеасомы [23]. Но что самое интересное — транскрипцию генов протеасом и шаперонов регулирует тот же Nrf2.
Сигнальный путь Nrf2

Рисунок 4. Цитопротекторный сигнальный путь Nrf2 (nuclear factor-erythroid 2-related factor-2). Этот путь регулирует транскрипцию более 200 генов, принимающих участие в антиоксидантном и противовоспалительном ответе организма на стрессы — «обыденные» (метаболические, типа окислительного) и «неожиданные» (токсины, поступившие извне). Белок Nrf2 синтезируется в эндоплазматическом ретикулуме (ЭПР) и может проникать в ядро, где активирует целевые гены. Стабильный уровень Nrf2 поддерживается путем модуляции его протеасомной деградации после убиквитинирования E3-убиквитинлигазным комплексом Cullin-3/Rbx1. В условиях гомеостаза Nrf2 связан в цитоплазме с «меткой деградации» Keap1 — субстратным адаптером убиквитинлигазы. Обрекают Nrf2 на деградацию и белки βTrCP, SIAH2, CRIF1. При стрессе конформационные изменения Keap1 делают невозможным убиквитинирование Nrf2, повышая тем самым продолжительность его «жизни» и величину пула свободного Nrf2. В итоге больше его молекул проникает в ядро, в комплексе с транскрипционным фактором Maf связывается с ARE/EpRE-локусом (antioxidant/electrophile response element) и индуцирует экспрессию генов, ответственных за синтез цитопротекторов и факторов контроля клеточного цикла. Неполноценность этого пути или подконтрольных компонентов характерна для многих патологий, особенно возрастзависимых (диабета, рака, нейродегенерации). Nrf2-путь постоянно гиперактивен у грызунов-долгожителей — благодаря снижению продукции негативных регуляторов Keap1 и βTrCP. Уровни экспрессии Nrf2-регулируемых генов в десятки раз (!) выше у голого землекопа по сравнению с мышами. Узлы этого пути (особенно синтез βTrCP) рассматривают в качестве перспективных целей для терапевтических агентов. Рисунок из [22], адаптирован.

Пока сложно делать общие выводы, ведь не все описанные молекулярные особенности изучались у большой выборки грызунов с разной МПЖ, да и того же слепыша. Вполне вероятно, что общий фундамент долголетия составляют механизмы устойчивости клеток землекопов ко всевозможным стрессовым факторам — от АФК и патологических белков до микотоксинов и ксенобиотиков. Это отчетливо проявляется, например, в исключительной невосприимчивости к раку и пожизненно стабильном поддержании мозговых функций этих животных. Особенности метаболизма глюкозы тоже могут влиять на продолжительность их жизни. Что же касается его величества Землекопа Голого, то большинству упоминаний о нём сопутствует слово «стабильность»: стабильная экспрессия большинства генов, стабильный протеом, стабильный уровень окисленных биомолекул, стабильная работа митохондрий и антиоксидантов, стабильный состав тела, стабильный темп метаболизма, стабильная работа органов. Вполне вероятно, что это свойство характерно и для его «товарищей» по подземелью.

Стратегии противораковой защиты грызунов-долгожителей

Важный, если не определяющий, вклад в долголетие землекопов вносит устойчивость к неоплазии — ведь основная причина смерти мышей и многих других млекопитающих — рак. Например, у некоторых линий мышей и крыс смертность от рака достигает 70–90%. В то же время ни об одном случае развития этой патологии у голых землекопов не сообщалось. Их фибробласты репликативно не стареют (гены теломеразы экспрессируются у этих грызунов всю жизнь), однако в культуре делятся чрезвычайно медленно. Между скоростью деления репликативно не стареющих фибробластов in vitro и продолжительностью жизни существует обратная корреляция [24]. Потому главные вопросы, на которые должен «ответить» голый землекоп: какие механизмы столь надежно контролируют его клеточный цикл, и только ли они обеспечивают нечувствительность к раку? У других грызунов-долгожителей, судя по всему, тоже найдутся интересные ответы.

Противораковая защита состоит из многих взаимосвязанных звеньев: она предполагает и строгую регуляцию прохождения контрольных точек клеточного цикла, и репарацию повреждений ДНК, и репликативное старение, и апоптоз, и даже настройку интенсивности убиквитинзависимой утилизации белков. Межвидовые различия в любом из этих процессов объясняют разницу в предрасположенности животных к онкозаболеваниям и (частично) в средней продолжительности их жизни (рис. 5) [24]. Мыши и крысы десятилетиями верой и правдой служили биомедицинской науке [25], но они далеко не лучший объект для изучения онкорезистентности, поскольку восприимчивы к развитию рака гораздо больше, чем люди, не говоря уже о землекопах. Значит, какие-то профилактические механизмы у них не работают, и исследователи упускают важные антипролиферативные факторы. Известно, в частности, что у человека в контроле клеточного деления задействованы оба важнейших пути — pRb и p53, а у мышей и крыс роль первого минорна, то есть подстраховки практически нет — и это при том, что теломераза в их соматических клетках активна. Экспериментально установлено, что для малигнизации мышиных фибробластов достаточно нарушить две клеточные системы, а человеческих — целых шесть. Соответственно, мышиная модель мало пригодна для предсказания человеческих процессов, и отсутствие подходящих животных до сей поры прилично ограничивало темпы онкологических исследований. Если классические модельные грызуны незаменимы для отработки терапии, то недостающие знания по профилактике могут дать именно животные-долгожители, у которых механизмы онкозащиты работают как часы на протяжении всей жизни [26].

Антираковые стратегии грызунов

Рисунок 5. Антираковые стратегии грызунов в зависимости от массы тела и продолжительности жизни. Риск развития рака повышается с ростом числа удвоений ДНК и клеток — то есть с годами и увеличением размера тела. С другой стороны, опасность представляет и «трудолюбивая» теломераза. У крупных грызунов (капибар, американских дикобразов, бобров), как и у человека, соматическая теломераза неактивна, что со временем приводит к запрету на клеточное деление и предотвращает онкогенез. У всех мелких грызунов теломераза чрезвычайно активна, теломеры не укорачиваются, что не отменяет скоротечность жизни многих из них (крыс, мышей и др.). Последним, в отличие от долгожителей, эволюция из соображений экономии отказала в разнообразии систем противораковой защиты. Виды-долгожители (голый землекоп, слепыш, серая белка) не проявляют репликативного старения, однако выработали альтернативные механизмы защиты от рака: популяция их фибробластов в культуре растет медленно — как и у крупных грызунов с «ленивой» теломеразой. Рисунок из [24], адаптирован.

I. Тотальная зачистка территории (стратегия слепыша)

Общая реальность для подземных грызунов — гипоксия. Причем гипоксия пульсирующая — то больше кислорода, то меньше, а то и совсем нет. Не удивительно, что в организмах таких грызунов, помимо высокой васкуляризации, эффективного дыхания и активного кроветворения, выработаны разные клеточные страховочные механизмы, часть которых так или иначе связана с канцерогенезом.

Дальний родственник голого землекопа — слепыш (Spalax, blind mole-rat) — подземный грызун, распространенный на Среднем Востоке (рис. 1). Он тоже отличается долгожительством (20 лет — не предел) и онкорезистентностью: спонтанные опухоли за 50 лет у этих животных не наблюдали ни разу, да и к индуцированному раку они экстремально устойчивы.

Доктор Вера Горбунова и ее коллеги из Рочестерского унивеститета (Нью-Йорк) и других институтов США и Израиля в поисках объяснения такой устойчивости проанализировали in vitro рост фибробластов двух видов слепышей — Spalax judaei и Spalax golani. Клеточные популяции активно удваивались лишь 7–20 раз, затем «притормаживали» и начинали секретировать β-интерферон (IFN-β), который вызывал массовый клеточный некроз — происходило самоочищение популяции на пороге онкогенеза. Такого единомоментного «конца» исследователи ни разу не наблюдали при выращивании фибробластов 20 других видов грызунов. Этот феномен не был связан ни с условиями культивирования, ни с укорочением теломер (клетки слепыша репликативно не стареют). Зато подтвердилось участие в некротическом ответе белков — контролёров клеточного цикла p53 и pRb [27].

Интересно, что бόльшая часть клеток гибла именно от некроза (казалось бы, неточного процесса), в то время как у фибробластов мышей IFN-β вызывал апоптоз. Авторы работы связывают это с адаптивной точечной мутацией гена белка p53 у слепышей, позволяющей в условиях характерной для подземных туннелей гипоксии отключать клеточное деление, создавая условия для репарации, но не запускать апоптоз. Не исключено, что некроз — даже более эффективная превентивная процедура, ведь она позволяет зачистить подозрительное место качественнее, уничтожив «неблагонадежное» окружение, подвергшееся опухолевой сигнализации. Та же группа ученых показала, что фибробласты слепыша и даже их культуральная среда вызывали гибель различных линий опухолевых клеток, включая человеческие [26].

Еще интереснее то, что поведение культур фибробластов слепыша и голого землекопа сильно различается: предотвращение переразмножения фибробластов последнего достигается за счет сверхчувствительности к уплотнению популяции (см. ниже). Клетки голого землекопа на стресс предпочитают отвечать традиционным апоптозом — как клетки мышей и человека. Получается, что одной и той же цели даже родственные организмы-долгожители могут достигать разными способами (правда, в описанных случаях стратегии таки сходятся на pRb-пути).

У слепыша обнаружен целый спектр обусловленных адаптацией к гипоксии изменений структуры генов или их экспрессии. Причем многие из этих генов напрямую связаны с канцерогенезом. Упомянутая мутация гена опухолевого супрессора p53, например, вполне обычна для человеческих злокачественных опухолей, но, увы, приводит она к иному результату... Ген главного фактора роста эндотелия сосудов VEGF у Spalax экспрессируется по максимуму, причем конститутивно — как в опухолях. У онкобольных высокий уровень этого фактора в крови связывают с неблагоприятным прогнозом: провоцируемый им ангиогенез обеспечивает условия для отдаленного метастазирования [28, 29]. Слепышу же он просто облегчает снабжение тканей кислородом. С другой стороны, анализ транскриптома Spalax выявил много работающих генов, связанных с устойчивостью одновременно и к раку, и к гипоксии [27]. В частности, почти три десятка уникальных аминокислотных замен в транскрипционном факторе Nrf2 (у млекопитающих он очень консервативен) в сочетании с высоким базальным уровнем его синтеза могут вносить вклад в превосходную устойчивость клеток слепыша к канцерогенам и иным стрессовым факторам.

II. Укрепление и уборка периферии (стратегии слепыша и голого землекопа)

Как ни странно, проблему формирования и развития опухолей нельзя решить, сконцентрировавшись на «внутренней» жизни клеток: они ведь не в вакууме обитают, а в насыщенном их же продуктами биоматриксе, через который передают друг другу сигналы, удаляют отходы, оценивают «микроклимат». Внеклеточный матрикс — это не простой бульон, а каркас для поддержания тканевой архитектуры и барьер, защищающий клетки от инвазии повреждающих агентов. Основа матрикса — трехмерная сеть волокон коллагена и эластина, пространство между которыми заполнено «желе», содержащим в основном гиалуроновую кислоту, гликопротеины и протеогликаны. Матрикс играет важную роль в процессах ангиогенеза, воспаления, регенерации, а также адгезии, роста и метастазирования опухолей. Не удивительно, что компоненты матрикса грызунов-долгожителей привлекли особое внимание биологов.

1. Такая разная гепараназа

Углеводные цепи протеогликанов матрикса очень часто представлены гепарансульфатом. Гепарансульфатные протеогликаны, взаимодействуя с другими компонентами матрикса, образуют своеобразное депо для факторов роста и цитокинов. Соответственно, разрушение гепарансульфатного каркаса гепараназой (HPSE) сопровождается высвобождением этих молекул и низкомолекулярных фрагментов самогό гепарансульфата. Последние, судя по всему, повышают выработку интерлейкинов и прочих провоспалительных цитокинов лейкоцитами и клетками селезенки [30]. Ну а факторы роста могут сигнализировать клеткам, что пора делиться. Избыток такой сигнализации способен провоцировать рост опухоли и ее метастазирование через новую сосудистую сеть (один из факторов — как раз ангиогенный VEGF). И хотя в норме цели у гепараназы благие — ускорить заживление ткани и рост сосудов, — в случае с онкопатологией она работает во вред: гепарансульфата много в базальной мембране сосудов, служащей препятствием для проникновения оторвавшихся от первичной опухоли клеток в другие ткани. Давно отмечена повышенная и ухудшающая прогноз продукция этого фермента многими опухолями.

Гепараназу сейчас рассматривают как перспективную мишень не только противораковой [31, 32] и противовоспалительной, но даже антидиабетической терапии. Дело в том, что лейкоциты секретируют этот фермент для облегчения миграции из кровяного русла в ткани. А диабет I типа (аутоиммунный) как раз связан с Т-лимфоцитарными атаками на продуцирующие инсулин клетки поджелудочной железы. Гепарансульфат защищает эти клетки от мигрантов и свободных радикалов, гепараназа же разрушает эту защиту. Показано также, что она может проникать прямо в ядро T-лимфоцитов и активировать гены, связанные с T-клеточной дифференцировкой [33].

У слепыша (Spalax judaei) гепараназа синтезируется гораздо интенсивнее, чем у людей, и ее пре-мРНК сплайсируется несколькими альтернативными способами. Стандартный вариант фермента режет гепарансульфат «с аппетитом» — так же, как и человеческий вариант (гомология их генов высока — 85%). Однако у слепыша в условиях пульсовой гипоксии образуются и альтернативные белки, в том числе почти лишенные гепараназной активности (варианты 7 и 36). Несмотря на это первый из них не оказывает противораковый эффект (не связано ли это с описанной способностью гепараназы напрямую регулировать транскрипцию?), а вот второй... Введение конструкции, продуцирующей вариант 36, в клетки меланомы на 80% сокращало выход фрагментов гепарансульфата: нерабочий белок грызуна доминировал над активным меланоцитарным. Видимо, альтернативные варианты нужны слепышу для модуляции работы стандартного фермента при изменении условий. В экспериментах in vivo вариант 36 заметно снижал метастатическую активность меланомы и в разы замедлял рост глиомы у мышей [34]. Таким образом, альтернативный сплайсинг гепараназы слепыша можно включить в арсенал стратегий ингибирования ее человеческого аналога.

2. Макроглобулиновый клининг-менеджмент

Совсем недавно внимание биологов привлекло еще одно внеклеточное вещество — α-2-макроглобулин (A2M) плазмы крови, ингибитор всех классов протеиназ. Дело в том, что в печени голого землекопа его ген «считывается» в 140 раз чаще, чем в мышиной, да и у человека этого белка меньше [35]. Вероятно, на заре эволюции землекопов подземный образ жизни способствовал закреплению у них высокого уровня A2M как главного защитника от бактериальных протеиназ. У грызунов A2M — главный белок острой фазы (у нас основным считается С-реактивный белок). Человеческий A2M обратимо связывает цитокины и факторы роста, обеспечивая их гомеостаз в тканях, а также инактивирует всевозможные, в том числе опухолевые, протеиназы. Взаимодействие с протеиназами открывает у макроглобулина сайт связывания с рецептором LRP1 (CD91), контакт с которым запускает быстрое очищение крови и тканей от A2M-протеиназных комплексов (путем рецепторзависимого эндоцитоза).

С возрастом количество A2M у человека снижается, соответственно, падает и качество «уборки». Предполагают, что этот белок играет значительную роль в онкогенезе, воспалении, нейродегенерации и старении: показано, что его рецептор, LRP1, задействован в липидном обмене, очистке крови от альцгеймеровского амилоида, гормона лептина и стимулирующих прогрессирование рака факторов (в том числе VEGF). Описана и вспомогательная роль A2M в «обличении предателей» — презентировании раковых антигенов. Этот белок претендует на роль шаперона, предотвращающего белковую агрегацию, и «снабженца» клеток цинком — незаменимым помощником многих ферментов, гормонов и транскрипционных факторов (дефицит цинка связывают с развитием возрастзависимых заболеваний). Так или иначе, структурные различия макроглобулинов голого землекопа и человека уже установлены, осталось самое сложное — оценить их влияние на продолжительность жизни. Авторы работы [35] осторожно напоминают об улучшении когнитивных функций в нашумевшем эксперименте с вливаниями «молодой» крови старым мышам. Тогда эффект связывали с активацией белка Creb в дряхлеющем гиппокампе [36], однако было бы интересно установить и роль A2M в подобных процессах...

3. Гиалуроновая экспансия

Пожалуй, лучше всего описана противораковая стратегия, связанная с высокомолекулярной гиалуроновой кислотой внеклеточного матрикса голого землекопа.

Полисахарид гиалуроновая кислота (ГК, гиалуронан) создает на поверхности клеток связанный с мембранными рецепторами защитный покров, организуя протеогликаны и другие поверхностные белки и поддерживая запас воды. Средняя молекулярная масса ГК в нормальных биологических жидкостях и тканях человека высока — около 1–8 МДа. Защитную функцию этого полимера ослабляют свободные радикалы, которые он вынужден активно улавливать, например, при воспалении. Потому для поддержания тканевого гомеостаза и обновления внеклеточного матрикса жизненно необходим быстрый обмен ГК, оптимальный баланс между синтезом и деградацией, иначе накапливаются ее низкомолекулярные фрагменты. Эти фрагменты нарушают архитектуру матрикса и конкурируют за связывание как с рецепторами высокомолекулярного гиалуронана, так и с альтернативными структурами, что приводит к изменению кластеризации рецепторов, структуры цитоскелета и внутриклеточной сигнализации [37]. Таким образом, ГК можно рассматривать как сенсор деструктивных процессов в клеточном микроокружении. Изменение баланса низко- и высокомолекулярного полимера — стимул, приводящий в движение многочисленные механизмы клеточного ответа, часто лишь усиливающие воспаление и переводящие его в разряд хронического [38].

Надо отметить, что между воспалением и раком существует явная связь, и недавно возрос интерес к ГК как возможному помощнику макрофагов и фибробластов в конструировании проопухолевой воспалительной среды [39]. Во-первых, обволакивание раковых клеток гиалуронаном защищает их от иммунных атак. Во-вторых, показано, что количество ГК повышается как при заживлении ран, так и прогрессировании карцином (кишечника, легких, груди, простаты, мочевого пузыря), однако одновременно повышается и экспрессия генов гиалуронидаз, что совместно с гиперпродукцией свободных радикалов макрофагами ведет к нарезанию длинных ГК-цепей на низкомолекулярные фрагменты. По их количеству в сыворотке крови можно, например, отличить метастатический рак молочной железы от неметастатического.

Связывание мелких фрагментов ГК с рецепторами типа CD44 и RHAMM/HMMR активирует сигнальные пути, стимулирующие не только воспаление, но и выживание, миграцию и инвазию опухолевых клеток (рис. 6) [40]. Снижение молекулярной массы ГК наблюдается и в хрящах пожилых людей, и в коже после УФ-облучения (В-типа), и в опухолях простаты [37]. А вот увеличение размера молекул ГК характерно как раз для наших любимых землекопов...

Деградация полимерной гиалуроновой кислоты

Рисунок 6. Деградация полимерной гиалуроновой кислоты (ГК) и влияние ее фрагментов на клетки в опухолевой микросреде. Слева — Синтезируемая в условиях гомеостаза высокомолекулярная ГК (≥ 500 дисахаридных единиц -β-1,4-GlcUA-β-1,3-GlcNAc-) разрушается на фрагменты (размером ≤ 50 дисахаридных единиц) под действием свободных радикалов и гиалуронидаз (HYAL1-2) в процессе повреждения тканей — при воспалении или онкогенезе. Фрагменты разной молекулярной массы выполняют разные функции: молекулы среднего размера (30–500 кДа) могут стимулировать деление клеток, а меньшего (<50 кДа) — их миграцию. Даже олигосахариды из трех и менее дисахаридных звеньев могут взаимодействовать с рецептором CD44. Справа — В клетках карциномы молочной железы (Breast Cancer) и ее стромы мембранные гиалуронансинтазы (HAS1-3) интенсивно производят высокомолекулярную ГК (ВМГК), которая в опухолевой микросреде быстро разрушается до низкомолекулярных фрагментов (НМГК). Фрагменты связываются с рецепторами CD44 и RHAMM/HMMR (цитоплазматическая молекула, которая экспортируется на поверхность только в стрессовых условиях и взаимодействует с CD44), вызывая реорганизацию цитоскелета и активацию работы сигнальных путей (например, MAPK/ERK, Akt и FAK). В итоге активация экспрессии ряда генов транскрипционными факторами типа AP-1 (activator protein 1) и NFκB (nuclear factor kappa B) приводит к направленной миграции клеток и высвобождению провоспалительных цитокинов [40]. Такие цитокины выделяют и опухолевые клетки, и фибробласты, рекрутируя клетки врожденного иммунитета (нейтрофилы и макрофаги). Совместно все эти элементы производят факторы, ремоделирующие внеклеточный матрикс так, что создается особая «раковая» среда, поддерживающая рост и прогрессию опухоли. Формируется порочный круг. Рисунки из [38] и [40], адаптированы. Чтобы посмотреть рисунок в полном размере, нажмите на него.

В 2009 году Андрей Силуанов, Вера Горбунова и их коллеги обнаружили, что фибробласты голого землекопа проявляют двухуровневое контактное торможение деления — в отличие от одноуровневого у мышей и человека [41]. Контактное торможение — ключевой антираковый механизм, блокирующий деление клеток при достижении определенной их плотности (в культуре — обычно при формировании монослоя). Этот механизм ломается у клеток злокачественных опухолей, и они беспрепятственно наслаиваются друг на друга. Так вот фибробласты голого землекопа в культуре прекращают делиться при гораздо меньшей плотности, чем такие же клетки мышей. Этот процесс, названный ранним контактным ингибированием (РКИ), протекает при условии исправности p53- и pRb-путей или хотя бы одного из них: если утрачивается «выключатель» клеточного цикла pRb, то запускается апоптоз за счет страхующей системы p53 (это свойственно и мышам, и людям), а если портится только последняя — апоптоз происходит всё равно (это исключительное свойство голого землекопа). Но такая ситуация, видимо, складывается нечасто. Здесь стόит добавить, что у землекопа по сравнению с мышами базальный уровень синтеза белка p53 в фибробластах в 50 раз выше, и при стрессовых воздействиях он «подскакивает» активнее.

Известно, что у мышей и человека контактное торможение опосредуется мембранными рецепторами с дальнейшей индукцией p27Kip1 — ингибитора циклин-зависимых киназ (из семейства Cip/Kip-ингибиторов), который в ядре мешает фосфорилированию белка Rb, блокируя этим переход клетки из фазы G1 в фазу S, то есть запрещая ей делиться. У голого землекопа p27 тоже делает свое дело — но если отключено раннее торможение деления, которое обеспечивается ингибитором p16Ink4a из другого семейства, Ink4. Получается, что «обычное» p27-торможение лишь дополнительно страхует грызуна-долгожителя от канцерогенеза в случае сбоя в работе p16-зависимой системы РКИ (рис. 7, слева).

Но природа настолько прониклась симпатией к этому зверьку, что подарила ему еще один «антираковой щит». Если каким-то образом заставить работать в фибробластах землекопа комплекс онкогенов, то справиться с гиперпролиферацией посредством описанных систем супрессии ему не удастся — онкогены этому мешают. Однако, в отличие от экспрессирующих онкогены мышиных клеток, фибробласты землекопа быстро прекращают делиться, проявляя все признаки так называемого клеточного кризиса: дефекты хроматина, многоядерность, незавершенные деления и т.п. В таком состоянии клетки могут находиться довольно долго. Но подозревают, что если их много, то в конце концов патологическую зону подчищает некроз [42].

Контактное ингибирование у голого землекопа

Рисунок 7. Многоуровневая защита от рака: особенности контактного ингибирования у голого землекопа. Слева — Сравнительная модель контактного ингибирования деления клеток землекопа, мыши и человека. Обычное контактное торможение, p27-опосредованное, характерно для клеток всех трех видов животных. Но у голого землекопа развился второй, ставший основным, уровень защиты от избыточной пролиферации — p16-опосредованное раннее контактное ингибирование (РКИ), не позволяющее культивируемым фибробластам плотно покрывать дно чашки Петри даже в один слой. Справа — Опухолевый супрессор pALTInk4a/b, дополнительный продукт локуса INK4a/b, задействованного в РКИ у голого землекопа. Буквами Е с порядковым номером обозначены экзоны локуса, символы α и β отражают принадлежность экзонов к разным рамкам считывания. p15Ink4b, p16Ink4a и ARF (p19ARF или p14ARF в зависимости от вида животного) — канонические транскрипты, pALTInk4a/b — уникальный, «землекоповый», результат альтернативного сплайсинга, объединяющий 5′ UTR-область и первый экзон p15 со вторым и третьим экзоном и 3′ UTR-областью p16. Рисунки из [41] и [44].

В 2013 году выяснилось, что непосредственное отношение к феномену РКИ имеет гиалуроновая кислота, причем характерная именно для голого землекопа — экстремально высокомолекулярная (ЭВМГК), в пять раз превышающая по размеру молекулы ГК человека и мыши (в случае фибробластов кожи — 6–12 против 0,5–3 МДа) [43]. ЭВМГК накапливается в тканях землекопа благодаря низкой активности его гиалуронидаз и высокой процессивности гиалуронансинтазы 2 (HAS2) с уникальной структурой активного центра. Более того, клетки этого грызуна более восприимчивы к «гиалуроновому» сигналингу. Если же активировать гиалуронидазы или нокаутировать HAS2, среда для культивирования фибробластов теряет повышенную вязкость, а клетки становятся способными к малигнизации (мы помним, что низкомолекулярная ГК способствует пролиферации и воспалению). Однако физического присутствия ЭВМГК недостаточно для РКИ — необходима полноценная работа сигнального пути, связывающего ГК-рецепцию с индукцией генетического локуса INK4 (кодирующего опухолевые супрессоры p15Ink4b, Arf и p16Ink4a). Судя по всему, этот путь включает ГК-рецептор CD44 и белок цитоскелета NF2 (мерлин). Предполагают, что склонность к накоплению ЭВМГК изначально развилась у землекопов для поддержания эластичности кожи, что просто необходимо в тесных подземных туннелях, и затем это свойство легло в основу противораковой защиты и долголетия этих млекопитающих. Интересно, что ЭВМГК производят и клетки слепыша.

Поскольку локус INK4 в числе наиболее часто мутирующих при раке у людей, понимание механизмов его экспрессии сложно переоценить. Кроме того, он участвует в развитии репликативного, онкогениндуцированного и преждевременного стрессиндуцированного старения, а возможно, и возрастных болезней (интересно, что при старении повышается экспрессия гена p16, но не p15, хотя локус один, и сами они — потомки одного дуплицировавшегося в древности гена). Однако в нашем контексте особенно важно, что потеря работоспособности локуса делает невозможным и раннее контактное ингибирование у землекопа.

Совсем недавно было обнаружено, что INK4-локус этого грызуна содержит ранний терминатор трансляции и кодирует дополнительный, четвертый, продукт — гибрид p15Ink4b и p16Ink4a [44]. Этот новый белок, названный pALTInk4a/b (рис. 7, справа), содержится как в культивируемых клетках, так и в разных живых тканях землекопа, но ни у человека, ни у мыши обнаружить его не удалось. Синтез pALTInk4a/b клетками индуцируется в течение РКИ и при стрессовых воздействиях: УФ- и γ-облучении, утрате сцепления с субстратом и активации онкогенов. Гиперпродукция «четвертого» белка с большей вероятностью блокирует цикл клеток землекопа и человека, чем гиперпродукция p15Ink4b или p16Ink4a. Соотношение разных продуктов локуса, видимо, тканеспецифично и меняется в зависимости от интенсивности и набора стимулов.

Недавно было показано, что обычное контактное ингибирование (наряду с сывороточным голоданием, гипоксией и рапамицином) подавляет путь mTOR, а следовательно, и героконверсию — переход обратимого ареста клеточного цикла в глубокое сенесцентное состояние с патологическим профилем клеточной секреции [45]. Потому нельзя исключить вклад РКИ, действующего через необычный INK4-локус, в предотвращение не только рака, но и старения как такового у голого землекопа. Дополнительный ингибитор циклин-зависимых киназ, вероятно, служит добавочным «слоем» защиты и позволяет животному тонко регулировать работу контрольных точек клеточного цикла, обеспечивая баланс между пожизненной способностью к клеточной пролиферации и супрессией опухолей. Очевидно, что разные этапы синтеза, метаболизма и сигналинга гиалуроновой кислоты могут быть перспективными целями для терапевтических воздействий уже в организме человека.

Заключение о важности ОТК

Итак, подземные грызуны-долгожители выработали множественные, многоуровневые механизмы защиты от рака при сохранении функции теломеразы. Долголетие повышает шансы развития опухолей, а опухоли мешают жить долго. У животных с пренебрежимым или замедленным старением удивительным образом сочетается экстремально долгая молодость с экстремальной устойчивостью к раку. Очевидно, что важную роль в продлении жизни играет активность сигнальных путей транскрипционных факторов Nrf2 и p53. По всей видимости, строжайший, многоуровневый контроль клеточного цикла и качества внутри- и внеклеточных биомолекул — залог успеха многих пренебрежимо стареющих организмов. Возможно, что-то из спектра «животных» ответов на риск малигнизации и прочих возрастзависимых заболеваний удастся адаптировать для нужд медицины человеческой — пусть вначале в виде «костылей», фармпрепаратов, но всё же...

Литература

  1. биомолекула: «Старческие капризы природы: почему люди прекращают стареть, а мыши не успевают жить»;
  2. биомолекула: «Преодолевшие старение. Часть I. Кому выпал эволюционный джекпот?»;
  3. Patterson B.D. and Upham N.S. (2014). A newly recognized family from the Horn of Africa, the Heterocephalidae (Rodentia: Ctenohystrica). Zool. J. Linnean. Soc. 172, 942–963;
  4. Элементы: «Голых землекопов не жжет ни кислота, ни перец»;
  5. Park T.J., Lu Y., Jüttner R., Smith E.S., Hu J., Brand A. et al. (2008). Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber). PLoS Biol6 (1), e13. doi: 10.1371/journal.pbio.0060013;
  6. Fang X., Seim I., Huang Z., Gerashchenko M.V., Xiong Z., Turanov A.A. (2014). Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes. Cell Rep8, 1354–1364;
  7. Buffenstein R. (2008). Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J. Comp. Physiol. B. 178, 439–445;
  8. «Научные идеи продления жизни». Буклет фонда «Наука за продление жизни»;
  9. Kim E.B., Fang X., Fushan A.A., Huang Z., Lobanov A.V., Han L. et al. (2011). Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature479, 223–227;
  10. Элементы: «Геном голого землекопа — ключ к секрету долголетия?»;
  11. биомолекула: «Вездесущий убиквитин»;
  12. биомолекула: «Старение — плата за подавление раковых опухолей?»;
  13. биомолекула: «Теломеры и новые мишени протоонкогенной терапии»;
  14. Davies K.T., Bennett N.C., Tsagkogeorga G., Rossiter S.J., Faulkes C.G. (2015). Family wide molecular adaptations to underground life in African mole-rats revealed by phylogenomic analysis. Mol. Biol. Evol. 32, 3089–3107;
  15. Hudry E., Van Dam D., Kulik W., De Deyn P.P., Stet F.S., Ahouansou O. et al. (2010). Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer’s disease. Mol. Ther. 18, 44–53;
  16. Keane M., Craig T., Alföldi J., Berlin A.M., Johnson J., Seluanov A. et al. (2014). The Naked Mole Rat Genome Resource: facilitating analyses of cancer and longevity-related adaptations. Bioinformatics30, 3558–3560;
  17. Edrey Y.H., Casper D., Huchon D., Mele J., Gelfond J.A., Kristan D.M. et al. (2012). Sustained high levels of neuregulin-1 in the longest-lived rodents; a key determinant of rodent longevity. Aging Cell11, 213–222;
  18. Pérez V.I., Buffenstein R., Masamsetti V., Leonard S., Salmon A.B., Mele J. et al. (2009). Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. PNAS. 106, 3059–3064;
  19. Lin S.J., Kaeberlein M., Andalis A.A., Sturtz L.A., Defossez P.A., Culotta V.C. et al. (2002). Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature418, 344–348;
  20. Aris JP1, Alvers AL, Ferraiuolo RA, Fishwick LK, Hanvivatpong A, Hu D. et al. (2013). Autophagy and leucine promote chronological longevity and respiration proficiency during calorie restriction in yeast. Exp. Gerontol48, 1107–1119;
  21. Lewis K.N., Andziak B., Yang T., Buffenstein R. (2013). The naked mole-rat response to oxidative stress: just deal with it. Antioxid. Redox. Signal19, 1388–1399;
  22. Lewis K.N., Wason E., Edrey Y.H., Kristan D.M., Nevo E., Buffenstein R. (2015). Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. PNAS. 112, 3722–3727;
  23. Azpurua J., Ke Z., Chen I.X., Zhang Q., Ermolenko D.N., Zhang Z.D. et al. (2013). Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage. PNAS. 110, 17350–17355;
  24. Seluanov A., Hine C., Bozzella M., Hall A., Sasahara T.H., Ribeiro A.A. et al. (2008). Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan. Aging Cell7, 813–823;
  25. биомолекула: «Грызун особого назначения»;
  26. Shams I., Manov I., Malik A., Band M., Avivi A. (2014). Underground fighting of cancer: Hypoxia-tolerant Spalax hides the key for treatment and prevention. The Plant & Animal Genome XXII Conference;
  27. Gorbunova V., Hine C., Tian X., Ablaeva J., Gudkov A.V., Nevo E., Seluanov A. (2012). Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. PNAS. 109 (47), 19392–19396;
  28. биомолекула: «Обнаружены организаторы побега раковых клеток из первичного очага»;
  29. биомолекула: «Тернистый путь метастазов: через гипоксию в печень»;
  30. Goodall K.J., Poon I.K., Phipps S., Hulett M.D. (2014). Soluble heparan sulfate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4. PLoS One9 (10), e109596. doi: 10.1371/journal.pone.0109596;
  31. Червякова Д. Новая стратегия противораковой терапии: ингибирование гепараназы. Интернет-журнал «Коммерческая биотехнология»;
  32. Pisano C., Vlodavsky I., Ilan N., Zunino F. (2014). The potential of heparanase as a therapeutic target in cancer. Biochem. Pharmacol. 89, 12–19;
  33. Parish C.R., Freeman C., Ziolkowski A.F., He Y.Q., Sutcliffe E.L., Zafar A. et al. (2013). Unexpected new roles for heparanase in Type 1 diabetes and immune gene regulation. Matrix Biol. 32, 228–233;
  34. Nasser N.J., Avivi A., Shafat I., Edovitsky E., Zcharia E., Ilan N. et al. (2009). Alternatively spliced Spalax heparanase inhibits extracellular matrix degradation, tumor growth, and metastasis. PNAS. 106, 2253–2258;
  35. Thieme R., Kurz S., Kolb M., Debebe T., Holtze S., Morhart M. et al. (2015). Analysis of alpha-2 macroglobulin from the long-lived and cancer-resistant naked mole-rat and human plasma. PLoS One10 (6), e0130470. doi: 10.1371/journal.pone.0130470;
  36. Villeda S.A., Plambeck K.E., Middeldorp J., Castellano J.M., Mosher K.I., Luo J. et al. (2014). Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. med20, 659–663;
  37. Cowman M.K., Lee H.G., Schwertfeger K.L., McCarthy J.B., Turley E.A. (2015). The content and size of hyaluronan in biological fluids and tissues. Front. Immunol6, 261. doi: 10.3389/fimmu.2015.00261;
  38. Misra S., Hascall V.C., Markwald R.R., Ghatak S. (2015). Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front. Immunol6, 201. doi: 10.3389/fimmu.2015.00201;
  39. биомолекула: «Одураченные макрофаги, или несколько слов о том, как злокачественные опухоли обманывают иммунитет»;
  40. Schwertfeger K.L., Cowman M.K., Telmer P.G., Turley E.A., McCarthy J.B. (2015). Hyaluronan, inflammation, and breast cancer progression. Front. Immunol6, 236. doi: 10.3389/fimmu.2015.00236;
  41. Seluanov A., Hine C., Azpurua J., Feigenson M., Bozzella M., Mao Z. et al. (2009). Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. PNAS. 106 (46), 19352–19357;
  42. Liang S., Mele J., Wu Y., Buffenstein R., Hornsby P.J. (2010). Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber). Aging Cell9, 626–635;
  43. Tian X., Azpurua J., Hine C., Vaidya A., Myakishev-Rempel M., Ablaeva J. et al. (2013). High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature499 (7458), 346–349;
  44. Tian X., Azpurua J., Ke Z., Augereau A., Zhang Z.D., Vijg J. et al. (2015). INK4 locus of the tumor-resistant rodent, the naked mole rat, expresses a functional p15/p16 hybrid isoform. PNAS. 112 (4), 1053–1058;
  45. Leontieva O.V., Demidenko Z.N., Blagosklonny M.V. (2014). Contact inhibition and high cell density deactivate the mammalian target of rapamycin pathway, thus suppressing the senescence program. PNAS. 111 (24), 8832–8837.

Источник: biomolecula.ru

Частичное перепрограммирование восстанавливает молодую экспрессию генов за счет временного подавления идентичности клеток

 Авторы: Antoine Roux, Chunlian Zhang, Jonathan Paw, José Zavala-Solorio, Twaritha Vijay, Ganesh Kolumam, Cynthia Kenyon, Jacob C. Kimmel     Аннотация   Сообщалось, что временная индукция...

Читать далее

Профилирование эпигенетического возраста в отдельных клетках

 Авторы: Александр Трапп, Чаба Керепеси, Вадим Николаевич Гладышев     Аннотация   Метилирование ДНК определенного набора динуклеотидов CpG стало критическим и точным биомаркером процесса старения. Многовариантные модели машинного обучения, известные как...

Читать далее

Эпигенетические часы показывают омоложение во время эмбриогенеза, с последующим старением

      Краткое содержание   Представление о том, что клетки зародышевой линии не стареют, возникло еще  с 19-го века от идей Августа Вейсманна. Однако...

Читать далее

Мультиомиксное омоложение клеток человека путем кратковременного перепрограммирования в фазе созревания

      Краткое содержание   Старение - это постепенное снижение физической формы организма, которое со временем приводит к дисфункции тканей и заболеваниям. На клеточном...

Читать далее

Универсальный возраст по метилированию ДНК в тканях млекопитающих (препринт)

Новые результаты       Старение часто воспринимается как дегенеративный процесс, вызванный случайным накоплением клеточных повреждений с течением времени. Несмотря на это, возраст можно...

Читать далее

Ограниченное омоложение старых гемопоэтических стволовых клеток в молодой нише костного мозга

      Гемопоэтические стволовые клетки (HSC) с возрастом обнаруживают функциональные изменения, такие как снижение регенеративной способности и миелоидно-зависимая дифференцировка. Ниша HSC, которая...

Читать далее

Разведение плазмы улучшает когнитивные функции и снижает нейровоспаление у старых мышей

      Наше недавнее исследование установило, что факторы молодой крови не являются причиной и не являются необходимостью для системного омоложения тканей млекопитающих...

Читать далее

Пора кончать со старой кровью - Джош Миттельдорф

      2020 год обещает нам, что мы сможем сделать наши тела молодыми без явного восстановления молекулярных повреждений, но лишь просто изменив...

Читать далее

Омоложение тканей трех зародышевых листков путем замены плазмы старой крови солевым раствором альбумина

     Аннотация   Гетерохронный обмен крови омолаживает старые ткани, и большинство исследований о том, как это работает, фокусируется на молодой плазме, ее фракциях...

Читать далее

Обращение возраста: измерение эпигенетического возраста двух разных видов с помощью одних часов

   Аннотация   Известно, что молодая плазма крови оказывает благотворное влияние на различные органы у мышей. Однако не было известно, омолаживает ли молодая...

Читать далее

Прорыв в омоложении

  Если вы избегаете громких заявлений и в течении длительного времени соблюдаете дисциплину недосказывания посреди яркого неонового мира, то возможно вы...

Читать далее

Трансплантация ACE2-мезенхимальных стволовых клеток улучшает результат лечения у пациентов с пневмонией, вызванной COVID-19

Озвучить текст роботом: 

    Краткое содержание   Коронавирус (HCoV-19) вызвал новую вспышку коронавирусной болезни (COVID-19) в Ухане, Китай. Профилактика и реверсия...

Читать далее

Диагностика старения на основе 9 признаков «Hallmarks of Aging»

  “Если вы не можете измерить это, вы не можете улучшить его”, — так сказал Уильям Томсон, великий ирландский физик известный...

Читать далее

Паттерны биомаркеров старения, смертности и вредных мутаций проливают свет на начинающееся старение и причины ранней смертности - Гладышев 2019

Основные моменты Смертность от возрастных заболеваний U-образная с надиром ниже репродуктивного возраста Количественные биомаркеры старения постоянно меняются на протяжении всей жизни Бремя мутаций...

Читать далее

Клеточное старение. Определение пути вперед

Клеточное старение - это состояние клетки, вовлеченное в различные физиологические процессы и широкий спектр возрастных заболеваний. В последнее время быстро растет...

Читать далее

Видео: Суть старения и путь к долголетию - Гладышев В.Н.

Лекторий МГУ: Вадим Николаевич Гладышев, 28 мая 2019 г. 17.00Тема лектория: «Суть старения и путь к долголетию». Профессор Факультета биоинженерии и...

Читать далее

Японцы получили разрешение скрестить эмбрион человека и животного

Ученые давно проводят эксперименты по выведению различных гибридных видов животных. Как правило, это относится к лабораторным животным, опыты над которыми...

Читать далее

Мыши смогли восстановить ампутированные пальцы при помощи двух белков

  Возможно, в будущем люди смогут восстанавливать потерянные конечности — на это, во всяком случае, намекают медицинские эксперименты. Ученым уже известно...

Читать далее

Израильские учёные разработали универсальное лечение против рака

    Небольшая группа израильских учёных считает, что они нашли первое универсальное лечение против рака.  «Мы считаем, что через год мы предложим универсальное...

Читать далее

Клинические испытания первой омолаживающей терапии

    Самое первое человеческое испытание сенолитических лекарств, было объявлено ещё в июне, и большая часть мира практически не обратила внимания на него...

Читать далее

Старение внеклеточного матрикса

    Данная статья собрана из нескольких моих ранних заметок о влиянии внеклеточного матрикса на процесс старения. Текст статьи будет обновляться — я планирую...

Читать далее

Обзор достижений в борьбе со старением в 2018 году

   Каким был 2018 год в борьбе со старением? Год начался с хорошей новости. Под давлением общественности, ученых, организаций и сторонников борьбы со...

Читать далее

Таблетка от старости и кровь младенцев: достижения науки о старении в 2018 году

    2018-й принес обнадеживающие результаты в борьбе со старением и стал годом взрывного роста бизнеса на бессмертии. Начались испытания сенолитика — препарата, убивающего стареющие клетки, ключевого...

Читать далее

Китайский ученый заявил о рождении первых в мире генетически модифицированных детей

  Китайский ученый Цзянькуй Хэ заявил о рождении первых в мире детей из генетически отредактированных эмбрионов. По словам ученого, родились близняшки, у которых он попытался создать устойчивость к заражению...

Читать далее

Новая веха в медицине: Создан первый в мире сканер для всего тела

    Исследователи и ученые из Калифорнийского университета в Дейвисе со своими китайскими коллегами из компании United Imaging Healthcare (UIH) создали аппарат...

Читать далее

Первая искусственная роговица, напечатанная на 3D-принтере, уже готова для трансплантации

    Роговица — это крайне важная, но очень хрупкая часть нашего органа зрения. Она очень легко подвержена травмам и различным заболеваниям...

Читать далее

Ученые создают лазерный кожный регенератор из «Стартрека»

     Технологии из научно-фантастической вселенной «Стартрек» продолжают проникать в нашу реальную жизнь. Мы уже читали о медицинском трикодере, слышали о разработках...

Читать далее

Ученые создали универсальные имплантаты, которые не будут отторгаться организмом

  Любые материалы (в том числе и биологические), которые не созданы нашим организмом, в любом случае являются чужеродными и будут отторгаться...

Читать далее

«Получи я миллиард долларов сегодня, мы победили бы старение на 10 лет раньше. Это 400 миллионов жизней»

      Обри де Грей: большое интервью   В Москву на конференцию «Future in the City», которая пройдет 18 и 19 июля в башне «Империя» в Москва-Сити...

Читать далее

Генетик из Гарварда создал стартап по омоложению собак

В дальнейшем ученый намерен распространить исследования на людей.     Генетик, молекулярный инженер и химик Джордж Черч из Гарварда основал стартап Rejuvenate Bio...

Читать далее

Как наука приближает бессмертие к реальности?

    Поиски Понсе де Леоном фонтана вечной молодости могут быть легендой, но основная идея — поиск лекарства от старости — вполне реальна. Люди...

Читать далее

Секрет вечной жизни точно скрывается в наших клетках

    Однажды могущественный шумерский король по имени Гильгамеш отправился на происки, как это часто делают персонажи мифов и легенд. Гильгамеш стал...

Читать далее

Геронтологи готовы к прорыву

Остановись, старенье!   Ведущие ученые из 17 стран приехали в Россию, чтобы решить проблему старения. Именно теперь, по их мнению, накоплен критический...

Читать далее

Моя улучшенная версия: как жить вечно

      Джордж Чёрч [George Church] возвышается над большинством людей. У него длинная серая борода волшебника Средиземья, а работа всей его жизни...

Читать далее

Клеточная терапия без клеток: омоложение внеклеточными везикулами

  Восстановление сердечной мышцы после месяца терапии внеклеточными везикулами. Иммунные метки: агглютинин (красный), тропонин (зеленый) и DAPI (голубой)   Исследователи Колумбийского университета, работающие...

Читать далее

Биологи впервые собрали мышиный «эмбрион» прямо из стволовых клеток

  Бластоциста состоит из внешнего слоя клеток, из которого развивается плацента, и внутреннего – будущего детёныша. Здесь и ниже иллюстрации Nicolas...

Читать далее

Способ борьбы со старением: обращение вспять процесса снижения концентрации НАД+

    Старение сопровождается развитием метаболических нарушений и дряхлением. Недавние исследования продемонстрировали, что снижение уровня никотинамидадениндинуклеотида (НАД+) – ключевой фактор замедления обменных процессов, связанного...

Читать далее

Лекарства от старения, и Где они обитают

Время напрямую людей не убивает, старение – это биологический процесс. Есть группа заболеваний, которые называют возраст-ассоциированными, или старческими. Основным фактором риска...

Читать далее

Создан микроскоп, позволяющий наблюдать за движением клеток внутри организма

Ученые из Медицинского института Говарда Хьюза усовершенствовали метод флюоресцентной микроскопии таким образом, что теперь с ее помощью можно снимать в...

Читать далее

Ученые имплантировали маленький человеческий мозг мыши

Имплантация органов и тканей – вещь в науке далеко не новая. Не первый день существуют и так называемые кортикальные наборы...

Читать далее

В человеческих клетках впервые обнаружена новая форма ДНК

Ученые из австралийского Института медицинских исследований Гарвана сообщили об открытии в клетках человеческого организма необычных структур ДНК – i-мотивов (intercalated-motif...

Читать далее

Нанонож лишнего не отрежет: хирурги тестируют точечную терапию рака

Самое распространенное среди мужчин онкологическое заболевание, рак простаты, которым страдает примерно четверть пациентов урологических стационаров, до недавнего времени лечили хирургически — удаляли...

Читать далее

В США впервые в мире провели комплексную пересадку пениса и мошонки

Врачам из больницы Джона Хопкинса (штат Мэриленд) удалось провести успешную комплексную трансплантацию пениса и мошонки. Операция длилась 14 часов, в...

Читать далее

Антиоксидант MitoQ омолаживает сосуды

Результаты, полученные исследователями университета Колорадо в Боулдере, работающими под руководством профессора Дага Силса (Doug Seals), еще раз подтвердили, что применение...

Читать далее

Эпидемия молодости: как прожить 120 лет и стать счастливым

    Около 5% нынешних молодых и богатых проживут 120 лет и дольше, считают биохакеры. Читайте, что для этого нужно делать. Осенью 2017...

Читать далее

Имплантация пигментного слоя сетчатки помогла сохранить зрение

    Борьба с заболеваниями, которые в той или иной степени угрожают жизни человека – одно из самых приоритетных направлений современной медицины...

Читать далее

В США протестировали мозговой имплантат для улучшения памяти

    Американские исследователи провели проверку имплантата-электростимулятора, призванного усилить память. В среднем способность к запоминанию слов удалось улучшить на 15%. Если технология пройдет...

Читать далее

Ученым впервые удалось воссоздать легочную ткань

    Лечение стволовыми клетками находит все большее применение в медицинской практике. Так, например, группа китайских ученых из Университета Тунцзи не так...

Читать далее

Ученые МИЭТа планируют начать серийное производство аппарата вспомогательного кровообращения для детей уже в этом году

    В 2012 году благодаря ученым нашего университета была осуществлена первая в России успешная операция по имплантации «искусственного сердца» человеку. К...

Читать далее

Первый шаг к тканеинженерным надпочечникам

    Исследователи лондонского университета королевы Марии, работающие под руководством доктора Леонардо Гуасти (Leonardo Guasti), использовали репрограммированные клетки для создания первого прототипа...

Читать далее
Image

Оцифровка пользователя, Моделирование, 3D-визуализация.

Создание подробной цифровой копии на основе данных из медкарты.

Анализ данных. Исправление показателей организма.

Image

Взаимодействие цифровых профилей с целью улучшения показателей.

Обмен знаниями, проведение общих исследований.

Загрузка личного аватара в 3D мир. Игрификация, соревнования.

Image

В разработке

  • Официальная страница о медицинских чат-ботах на сайте Сверхчеловечество.рф
  • Подробности разработки чат-бота для проекта "Карта управления возрастом" (для партнеров и разработчиков) здесь:
Image

Обзор мировых разработок по хранению данных в разработке

Хранилище данных для Электронной Медицинской Карты Управления Возрастом в разработке

Материалы по теме:

Image

Основное взаимодействие планируется производить посредством Социальной сети:

Также существует множество специализированных телемедицинских сервисов:

Image

Данный раздел находится в разработке и будет доступен после запуска Электронной медицинской Карты Управления Возрастом:

Image

Основной материал сайта по теме искусственного интеллекта в медицине здесь:

На основе данной статьи будет определяться разработчик искусственного интеллекта для данной системы управления возрастом.

Image

ВАШ ЛИЧНЫЙ ВКЛАД В БОРЬБУ СО СТАРЕНИЕМ

Скооперируйтесь с тысячами других участников и создайте любой проект в области антистарения, проведите научные исспедования

Площадка для создания и финансирования проектов. Официальная страница сайта Сверхчеловечество.рф для сбора средств на ускорение прогресса в области омоложения:

Image
Image

Основная страница сайта Сверхчеловечество.рф о создании и участии в клинических испытаниях терапий антистарения и отката возраста организма здесь: