Помощь слепо-глухим становится заботой отечественных гаджетов

Robo

"Умные" девайсы и биоимпланты изменят жизнь слепоглухих.

В России примерно 15-16 тысяч людей с нарушениями слуха и зрения. Слепоглухих. Закройте уши и глаза на пару минут - и все равно не поймете, как они живут.

 

Самостоятельно прочитать SMS или письмо, "упавшее" на электронную почту, - задачи для них почти невыполнимые. Когда они смогут пользоваться смартфонами? Чем полезен робот-сиделка? Какие цвета распознает бионический глаз - имплантат? Корреспондент "РГ" познакомился с социальными инновационными проектами для слепоглухих людей и узнал, какие технологии могут изменить их жизнь.

 

Сломать барьер "темноты и тишины" поможет разработка российских инженеров - коммуникационная перчатка Брайля. С ее помощью можно отправлять эсэмеcки и переписываться, например, в WhatsApp или Viber.

 

"Начинка" у гаджета - самая современная. Она сшита из эластичной синтетики, внутри - токопроводящие нити. Перчатка подключается к смартфону по Bluetooth или Wi-Fi, а работает от блока питания размером с наручные часы. На подушечках пальцев, фалангах и ладони есть контактные зоны - мягкие кнопки. Соединяешь их в правильной последовательности - получается слово или предложение.

 

- Здесь используется логика шеститочечного шрифта Брайля. Например, чтобы напечатать букву "А", нужно средним пальцем коснуться ладони, а чтобы поставить пробел, придется соединить большой и указательный палец, - говорит разработчик гаджета Федор Беломоев. - На внешней стороне перчатки - виброэлементы: они принимают информацию. Каждая буква "жужжит" по-своему, а силу вибрации можно регулировать.

 

Еще одна полезная "фишка" - синтезатор речи. Слепоглухой может набрать текст "брайлем" на перчатке - сигнал тут же поступает в смартфон. В нем код расшифровывается и динамик озвучивает текст голосом. В обратную сторону - то же самое. Смартфон распознает речь, переводит ее в сигналы Брайля и отправляет на перчатку. Та вибрирует - сообщение дошло.

 

Эта же перчатка сможет стать навигатором, если установить приложение "Поводырь". Оно пока на стадии разработки, но в идеале должно работать так: вводишь пункт назначения и начинаешь движение, а программа фиксирует твое положение. На перчатку она постоянно отправляет вибросигналы: "еще два метра прямо", или "пора свернуть".

 

Прототип перчатки уже испытывают слепоглухие: запомнить все комбинации символов и наловчиться быстро печатать некоторые смогли и за пару дней. Другим понадобилось чуть больше времени. Планируется, что новый гаджет появится в продаже уже летом. Его стоимость не превысит 20 тысяч рублей. Зарубежные аналоги обойдутся в несколько раз дороже.

 

Смартфон на ощупь

 

Первый российский смартфон для слепых и слепоглухих работает, как и большинство гаджетов, на операционной системе Android, но вместо сенсорного экрана у него система кнопок. Проверить электронную почту и уровень заряда "мобильника" теперь можно на ощупь. Каждый шаг смартфон озвучивает, читает эсэмески, сайты, ленты новостей...

 

Нажимаешь кнопку "Меню", и смартфон по очереди озвучивает все установленные программы. Листаешь до "Почты" - в ней программа начинает называть по очереди все папки. Во "Входящих" письма перечисляются по теме и отправителю. Выбираешь нужное, и смартфон его зачитает. По такому же принципу можно зайти в онлайн-библиотеку, скачать аудиокнигу и запустить ее в плеере.

6090

Российский смартфон для слепоглухих работает на Android.

 

- Это техническое средство реабилитации, разработанное специально для инвалидов по зрению, - говорит куратор направления "Технологии возможностей" Фонда поддержки слепоглухих "Со-единение" Павел Осипов. - В первую очередь, смартфон улучшит жизнь тотально незрячих людей.

 

Кстати, многие слепые жалуются, что метки на российских банкнотах невозможно "считать" пальцем, они бессмысленны. Но распознать купюры им поможет встроенная в смартфон камера и специальное приложение-сканер. А система электронных карт и спутниковый навигатор проложат и озвучат любой маршрут по городу, встроенный микрофон пригодится для голосовых заметок. Плюс - радио, будильник, текстовый редактор...

 

Обойдется такое "удовольствие", как и всякий современный смартфон, недешево - в 20 тысяч рублей. Цена зависит от высокой стоимости производства при маленьком рынке сбыта. Но если российским разработчикам удастся получить помощь государства или выйти со своим гаджетом в Европу, его цена может снизиться.

 

Роботы рулят

 

Узнать срок годности молока? Заказать еду из магазина? Проверить, выключена ли бытовая техника? Нужно лишь постучать по экрану робота, и его оператор получит сигнал - "пациенту нужна помощь". В роли сиделки - первые российские стационарные роботы и роботы телеприсутствия.

 

Через механический аватар социальный работник поможет слепоглухому прочитать инструкцию к лекарству или вызвать врачей в случае ЧП. Оператор может управлять роботом: вертеть "головой" с камерой, чтобы осмотреться в комнате, или проехать по квартире в поисках пропавшей вещи. При этом оператор робота всегда "на чеку". Он общается с пациентом через веб-камеру и специальную программу. С незрячими людьми беседа идет через динамики и микрофон. Со слепоглухими - через специальный коммуникатор, который похож на пульт от телевизора. Он кодирует речь в вибрацию по принципу шрифта Брайля.

 

Поймали эхо

 

Сориентироваться в пространстве поможет гаджет - сонар. Его можно носить как брелок, подвеску или насадку на трость. Главный плюс - сонар может предупредить о высоких препятствиях, которые трость на земле не "прощупает". Например, шлагбаумы, рекламные конструкции, припаркованный высокий грузовик. Чувствительность датчика можно настроить, оптимальный вариант - полтора метра.

 

Как это работает? Гаджет выпускает ультразвук и засекает время, пока тот отразится от препятствия и вернется эхом. Чем быстрее вернулся, тем меньше расстояние. Если подходишь слишком близко - раздается громкий сигнал, сонар начинает вибрировать.

 

Что интересно, корпус гаджета печатается на 3D-принтере, а его 3D-модель и программное обеспечение можно скачать с сайта разработчика. Так что такой сонар можно смастерить и самому, если есть под рукой 3D-принтер и время поискать в Интернете нужные микросхемы и датчики. Готовые модели, когда поступят в продажу, будут стоить не больше двух тысяч рублей.

 

Картинка в фокусе

 

Электронные очки - футуристичный гаджет, который, по словам разработчиков - резидентов "Сколково", может заменить собаку-поводыря. Вместо стекол у него - видеокамеры. Картинка в формате 3D поступает на компьютер размером со смартфон. Устройство переводит полученное изображение в цифровой формат, составляет трехмерную карту пространства и рассчитывает расстояние до препятствия. О приближении к преграде сообщает звуковой сигнал в специальных "костных" наушниках.

 

Прибор оснащен GPS/GLONASS приемником, акселерометром, гироскопом, компасом. Все это позволяет суперочкам не путать людей с фонарными столбами и давать советы: с какой стороны лучше обойти препятствие. В памяти гаджета - подробнейшие карты городов, поэтому окружающий мир он может описать. Например: "Впереди ступени вниз", "Вы проходите крытую остановку со скамейкой". А если к этой остановке подойти - назовет маршруты проезжающих автобусов.

 

- Это электронный ассистент, благодаря которому мы получаем независимость, - говорит незрячий с рождения Максим Спиридонов, один из разработчиков проекта. - Наш навигатор может назвать и цвет светофора, и даже прочитать вывеску магазина.

 

По словам разработчиков, петербургские центры реабилитации получат этот гаджет для тестирования.

9 polosa 1000

Инфографика РГ/Антон Переплетчиков/Ксения Колесникова

 

Я тебя вижу

 

И совсем уж из области фантастики - бионический микрочип-имплантат. Он позволяет абсолютно слепым людям распознавать очертания предметов. Правда, после такой операции мир видится не в ярких красках, а в сером, черном цвете. Но это лучше, чем кромешная тьма!

 

- Над этим проектом работает международная группа врачей и ученых, в год они делают около ста операций. Фонд "Со-единение" вместе с другими фондами поддержки инвалидов прорабатывает возможность отправки на такую операцию в Германию несколько российских пациентов в 2016 году, - говорит Павел Осипов. - Правда, бионический глаз может помочь далеко не всем. Есть много условий по особенностям организма, возрасту. Как минимум, слепота должна быть приобретенная, должен работать зрительный нерв.

 

Бионический глаз - это микрочип размером примерно 3х3 миллиметра. Он вживляется пациентам прямо в сетчатку глаза, и к нему через искусственные синоптические связи подсоединяются нейроны. На чип подается информация с камеры, установленной на очках. Картинка считывается и закодированным сигналом передается прямо в мозг: работа идет на стыке нано, биотехнологий и нейронауки.

 

Со следующего года ученые пойдут еще дальше: попробуют вживлять импланты не в глаза, а непосредственно в головной мозг, в ту область, которая отвечает за восприятие зрения.

 

- Но как заставить мозг распознать сигнал правильно и выстроить в голове картинку? В этом - вся сложность, - говорит Павел Осипов. - Сама операция длится полчаса, стоит от 120 тысяч евро, а период восстановления может идти годами. Реабилитацию фонд "Со-единение" планирует наладить в России.

 

Между тем

 

Фонд поддержки слепоглухих уже подарил более 120 технических средств реабилитации своим подопечным. Как получить гаджет? Во-первых, пройти Всероссийскую перепись слепоглухих, написать заявление о предоставлении благотворительной помощи в виде оплаты технического средства реабилитации. Фонд рассматривает все заявки и с учетом потребностей (необходимости для учебы, работы, участия в общественной жизни) принимает решение. "Мы не выдаем технику, прописанную в индивидуальной программе реабилитации, такую, как, например, слуховые аппараты, - рассказали "РГ" в фонде. - Зато те, кто обучаются на курсах компьютерной грамотности, могут получить брайлевский дисплей, сдав тестовый экзамен по окончании курсов".

 

Недавно в Москве заработал первый в России Ресурсный центр поддержки слепоглухих. В нем занимаются дети и взрослые с одновременным нарушением слуха и зрения и их родители, ведутся научные проекты в области лечения и реабилитации таких пациентов. Кроме того, работают компьютерные классы, сенсорные комнаты, спортивные залы и тренажеры, медицинские кабинеты и даже творческие мастерские.

 

Источник: http://www.rg.ru/2016/01/29/roboty.html

Учёные предложили алгоритм, позволяющий быстрее и точнее исследовать ДНК

Группа учёных из Германии, Америки и России, при участии заведующего кафедрой Московского физико-технического института (МФТИ) Марка Бородовского, предложила алгоритм, который автоматизирует и делает эффективнее поиск генов. Разработка соединяет в себе преимущества наиболее продвинутых инструментов для работы с геномными данными. Новый метод позволит точнее и быстрее анализировать новые последовательности ДНК и находить полный набор генов в геноме. 
 
Хотя статья Hoff et al. BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS, описывающая алгоритм, была только недавно опубликована на страницах журнала Bioinformatics, издаваемого Oxford Journals, предложенный метод успел показать и доказать свою актуальность – компьютерную программу уже скачали более 1500 различных центров и лабораторий по всему миру. Тестирование алгоритма показывает его существенно более высокую точность по сравнению с другими алгоритмами. Представленная разработка относится к области биоинформатики – дисциплины «на стыке наук». 
 
Биоинформатика – это набор методов математики, статистики и информатики, применяемых для исследования биологических молекул, таких как ДНК, РНК, белки. ДНК, фундаментально информационная молекула, иногда даже изображается в компьютеризованном виде, чтобы подчеркнуть её роль как молекулы биологической памяти. 
 
photo 2016 01 15 17 30 00
 
Популярность биоинформатики велика, ведь каждый новый просеквенированный геном порождает столько новых вопросов, что учёные просто не успевают на них отвечать. Время специалистов, как и сами специалисты, ценится на вес золота. Именно поэтому автоматизация процессов – залог успеха любого биоинформатика, и подобные алгоритмы очень нужны для решения различных задач.
 
Одной из важных задач биоинформатики является аннотация генома – определение того, с каких именно участков молекулы ДНК синтезируются РНК и белки. Такие области – гены – представляют особый научный интерес. Дело в том, что для многих исследований нужна информация не обо всей ДНК (длина которой составляет 2 метра только для одной человеческой клетки), а о её наиболее информативной части – генах. Выявление генных участков происходит на основе поиска сходства фрагментов последовательности с уже известными генами или путём обнаружения характерных для генов закономерностей чередования нуклеотидов. Этот процесс осуществляется с помощью предсказательных алгоритмов.
 
Найти генныe участки – нетривиальная задача, особенно в эукариотических организмах, к которым относятся практически все широко известные виды, кроме бактерий. Это происходит из-за того, что у таких клеток передача наследственной информация усложнена наличием «разрывов» в кодирующих областях (интронов) и отсутствием однозначных признаков для определения того, является ли область кодирующей или нет.
 
Алгоритм, предложенный учёными, определяет, какие области в ДНК являются генами, а какие – нет. Для этого можно использовать марковскую цепь (последовательность случайных событий, будущее которых зависимо от прошлого), обучаемую на уже известных генах. Состояниями цепи в данном случае являются либо нуклеотиды, либо нуклеотидные слова. Алгоритм определяет наиболее вероятное разбиение генома на кодирующие и некодирующие области, наилучшим образом классифицирующие геномные фрагменты по их способности кодировать белки или РНК. Экспериментальные данные, полученные из РНК, дают дополнительную полезную информацию, на которой можно обучить модель, используемую в алгоритме. Некоторые программы-предсказатели генов могут использовать эти данные для повышения точности нахождения генов. Однако такие алгоритмы требуют обучающую выборку, на которой будет происходить видо-специфичная тренировка модели. Например, для программы AUGUSTUS, показывающей высокую точность, необходима тренировочная выборка из генов. Такое множество можно получить с помощью другой программы – GeneMark-ET – которая относится к категории само-тренирующихся алгоритмов. Эти два алгоритма и объединил алгоритм BRAKER1, предложенный совместно авторами AUGUSTUS и GeneMark-ET.
 
BRAKER1 показал высокую эффективность. Разработанную программу скачали уже более 1500 различных центров и лабораторий. Тестирование алгоритма показывает его существенно более высокую точность по сравнению с другими алгоритмами. Примерный хронометраж BRAKER1 на одном процессоре составляет ∼17.5 часов для обучения и предсказания генов на геноме длиной 120 миллионов пар оснований. Это хороший результат, учитывая, что время может быть значительно уменьшено за счёт использования параллельных процессоров, а значит в перспективе алгоритм может работать еще быстрее и, в целом, эффективнее. 
 
Подобные инструменты помогают решать множество различных задач. Точная аннотация генов в геноме чрезвычайно важна. Например, уже опубликованы первые результаты глобального проекта «1000 человеческих геномов», запущенного в 2008 году при содействии 75 лабораторий и компаний. В результате было обнаружено большое количество последовательностей редких генных вариантов – замен в генах, некоторые из которых приводят к болезням. При диагностике генетических заболеваний очень важно понимать, какие замены в участках генов приводят к возникновению болезней. В процессе проекта расшифровываются геномы различных людей, особенно кодирующие их части, и выявляются редкие замены нуклеотидов. В будущем это поможет медикам диагностировать такие сложные заболевания, как болезни сердца, диабет и рак. 
 
BRAKER1 позволяет эффективно работать с геномами новых организмов, ускоряя аннотацию геномов и получение критически важных знаний в науке о живой природе.
 
 
Пресс-служба МФТИ

Новый уровень в геномной инженерии с CRISPR-Cas9

История вопроса (предпосылки):

Технологии создания и манипулирования ДНК обеспечивали прогресс в биологии с момента открытия двойной спирали ДНК. Но все еще остается трудно достижимым внесение сайт-специфичных изменений в геномы клеток и организмов. Ранние подходы основывались на принципе сайт-специфического узнавания последовательностей ДНК с помощью олигонуклеотидов, малых молекул или интронов со способностью к аутосплайсингу (self-splicing). Не так давно были разработаны сайт-направленные нуклеазы цинковый палец (ZFNs)  и TAL эффекторные нуклеазы (TALENs), использующие принцип ДНК-белок узнавания. Как бы то ни было, сложности моделирования, синтеза и проверки работоспособности оставались препятствием для широкого внедрения этих нуклеаз для рутинного использования.

Преимущества:

В настоящее время биология находится в переходной стадии в связи  с появлением удобного метода геномной инженерии животных и растений с использованием РНК-программируемого комплекса CRISPR-Cas9. Технология CRISPR-Cas9 основана на системах CRISPR-Cas типа II, которые обеспечивают бактерий приобретенным иммунитетом к вирусам и плазмидам. CRISPR-ассоциированный белок Cas9 является эндонуклеазой, которая использует направляющую последовательность  в структуре РНК- дуплекса, tracrRNA: crRNA, чтобы сформировать комплекс с последовательностями ДНК-мишени, что позволяет Cas9 произвести сайт-специфичный  двухцепочечной разрыв в ДНК. Дуплекс tracrRNA:crRNA был заменен химерной одиночной РНК-гид (направляющей) (sgRNA), сохраняющая две важнейшие характеристики дуплекса: последовательность в 5’ конце, которая определяет на ДНК сайт-мишень  по принципу комплементарности, и шпильку (структуру дуплекса РНК) на 3’ конце, которая связывается с Cas9. Эта химерная РНК позволила создать простую двух компонентную систему, в которой изменения в направляющей последовательности sgRNA программировали Cas9  позволили направленно воздействовать ​​на любую интересующую последовательность ДНК. Простота программирования  CRISPR-Cas9,  уникальный механизм разрезания ДНК, способность к множественному (мультиплексному) узнаванию мишеней, а также существование многих природных вариантов системы CRISPR-Cas типа II- все это вместе дало огромный толчок развитию этой дешевой, эффективной и в то же время простой в использовании технологии для точного и эффективного таргетинга, редактирования, модифицирования, регулирования и маркирования локусов в геноме широкого спектра клеток и организмов.

CRISPR1

Фермент Cas9 (синий) осуществляет разрыв в двухцепочечной молекуле ДНК, используя два своих каталитических центра (лезвия), чтобы разрезать каждую цепочку ДНК в сайте-мишени (золотой) рядом с последовательностью PAM (красный) и используя соответствие 20-нуклеотидной последовательности (оранжевой) одиночной направляющей РНК (sgRNA). SgRNA включает в себя «шпильку» РНК, образованную из CRISPR РНК (светло-зеленой), и отдельной tracrRNA (темно-зеленой), которая связывается с белком Cas9 и стабилизирует его. Результатом Cas9-sgRNA-опосредованного разрезания ДНК является двух цепочечный разрыв с «тупыми» концами, который запускает работу ферментов репарации, изменяющих или восстанавливающих последовательности ДНК на сайте или вблизи сайта расщепления. Каталитически неактивным формы Cas9 также могут быть использованы для программируемого регулирования
транскрипции и визуализации локусов генома.

РЕДАКТИРОВАНИЕ ГЕНОМА

Новый рубеж генной инженерии с CRISPR-Cas9

Дженнифер А. Даудна 1,2,3 * и Эммануэль Шарпантье 4,5,6 *

Появление удобного инструмента геномной инженерии растений и животных, основанный на использовании бактериальной РНК-направляемой системы CRISPR-Cas9, изменило биологию. Мы рассматриваем историю биологии CRISPR (Коротких палиндромных повторов, регулярно расположенных группами) от их первоначального открытия и до выяснения механизма работы самого фермента CRISPR-Cas9,  заложившего основу для выдающихся разработок в модифицировании, регулировании работы и маркировании локусов в геноме широкого спектра клеток и организмов из всех трех царств живой природы. Эти разработки стали точкой отсчета новой эры, в которой манипуляции с геномом больше не являются непреодолимым препятствием для экспериментов, и, таким образом, открывают путь к фундаментальным открытиям в биологии, с применением  во всех отраслях биотехнологии, а также в  лечения человека.

В последние 60 лет именно технологии изготовления и манипулирования ДНК обеспечивали прогресс в биологии. Эта эра началась с открытия двойной спирали ДНК и продолжилась развитием химических методов твердофазного синтеза ДНК, позволяющих обнаруживать и исследовать организацию генома. Ферменты (в том числе полимеразы, лигазы и рестриктазы (эндонуклеазы рестрикции)) и полимеразная цепная реакция (ПЦР) позволили изолировать отдельные гены и фрагменты генов, а также дали возможность  вносить мутации в гены in vitro, в клетки и в модельные организмы. Одним из выдающихся достижений за последние два десятилетия является появление технологий  секвенирования генома и стремительное накапливание данных о последовательности всего генома для большого числа различных типов организмов, включая человека. Теперь, РНК-направляемый фермент Cas9, который происходит от CRISPR-Cas системы адаптивного иммунитета бактерий, изменяет биологию, предоставляя геномной инженерии инструмент, основанный на принципе комплементарности. Простота его использования и эффективность привели к его быстрому распространению в лабораториях по всему миру. Ниже мы обсудим историю и биологию CRISPR систем, опишем молекулярные механизмы, лежащие в основе редактировании генома Cas9, и рассмотрим стремительное развитие использования этой технологии с момента первоначальной публикации о ней в 2012 году.

Геномная инженерия — «цель», длинной в десятилетия

С момента открытия двойной спирали ДНК, исследователи и клиницисты размышляли о возможности внесения конкретных изменений  в геномы клеток и организмов. Многие из ранних подходов, именуемых  «редактированием» генома, опирались на принцип сайт-специфического узнавания последовательностей ДНК (рис. 1). Исследование природных путей репарации ДНК в бактериях и дрожжах, а также механизмов рекомбинации ДНК (1-5), показало, что клетки имеют эндогенный механизм для устранения двухцепочечных разрывов ДНК (ДР (DSBs)), которые могли бы быть смертельными для них (6-9). Таким образом, способы внесения точечных разрывов в участки ДНК  , где нужно провести изменения, оказались методом, имеющим большую ценность для  геномной инженерии.

Ранние подходы к такому точечному разрезанию ДНК основывались на принципе узнавания пар оснований ДНК олигонуклеотидами или небольшими молекулами. Исследования, основанные на авторском описании формирования тройной спирали (трех нитчатой структуры) Ричем (Rich) и его коллегами в конце 1950-х годов (10, 11),  показали, что олигонуклеотиды, соединенные с химическим лезвием или кросс-линкинг (сшивающих накрест) реагентами, такими как блеомицин и псорален,  являются пригодными для сайт-специфичной хромосомной модификации в клетках дрожжей и млекопитающих (12-17). Как показали исследования, другие способы химического распознавания последовательностей ДНК, такие как пептидные нуклеиновые кислоты (PNA) и полиамиды,  предоставляют возможность направленного связывания с локусами на хромосомах, которые могут быть модифицированы, если химический распознающий агент был соединен с разрезающим реагентом, таким как блеомицин (18- 20). Другая стратегия, основывавшаяся на спаривании оснований нуклеиновых кислот по принципу комплементарности, заключалась в использовании интронов со способностью к аутосплайсингу для изменения последовательности на ДНК (21, 22) или РНК (23) уровне. Хотя эти подходы не прижились, они продемонстрировали практическую ценность принципа спаривания оснований для сайт-специфической модификации генома.

Использование интров со способностью к аутосплайсингу для редактирования генома также предоставило возможность использования интрон-закодированных нуклеаз (самонаводящиеся эндонуклеазы), способных на сайт-специфическое разрезание ДНК и на взаимодействие с последовательностью интрона. Вставив сначала требуемые последовательности в интрон, исследователи могли включить выбранную генетическую информацию в геном на участках, узнаваемых самонаводящейся эндонуклеазой (24, 25). Примерно в то же время, первые доклады о «цинковом пальце»-опосредованном связывании с ДНК (26, 27) привели к созданию модульных (состоящих из заменяемых частей) белков со способностью к распознаванию ДНК, которые, в сочетании с доменом последовательность-независимой рестриктазы FokI, могут функционировать как сайт-специфические нуклеазы (28). Первоначально разработанные для распознавания последовательности в хромосоме, такие нуклеазы типа «цинковый палец» (ZFNs) оказались эффективными в стимулировании изменений в последовательности генома клеток дрозофил и млекопитающих (29, 30). И хотя ZFNs являются эффективными реагентами для редактирования генома в некоторых экспериментах, они не получили широкого распространения из-за трудностей в создании и валидации таких белков для конкретного интересующего локуса ДНК. Таким образом, область биоинженерии начала заполняться первыми сообщениями о наличии эффекторов, подобных активаторам транскрипции (TAL), которые встречаются в природе у бактерий, заражающих растения. В дальнейшем это позволило достаточно быстро создать FokI-связанные версии, которые могли бы быть использованы аналогично ZFNs для сайт-направленного редактирования генома (31-33). Такие TAL эффекторные нуклеазы (эффекторные нуклеазы, подобные активаторам транскрипции) (TALENs) были проще в изготовлении и валидации, (документированной процедуры, дающая высокую степень уверенности в том, что конкретный процесс, метод или система будет последовательно приводить к результатам, отвечающим заранее установленным критериям приемлемости (в производстве медицинских препаратов является одним из требований практики правильного (качественного) производства — прим. пер.), чем ZFNs, и, как следствие, создавали впечатление о возможности легкого, быстрого и дешевого редактирования генома. Но трудности проектирования  структуры белка, синтеза и валидации остаются препятствием для широкого внедрения этих сконструированных нуклеаз для повседневного использования.

История и биология систем CRISPR-Cas

В параллельной, но совершенно отдельный области исследований, в нескольких лабораториях микробиологии и биоинформатики в середине 2000-х годов начали изучать CRISPRs (Короткие палиндромные повторы, регулярно расположенные группами),  описанные в 1987 году японскими исследователями, как серии коротких прямых повторов, расположенных между короткими последовательностями в геноме кишечной палочки (34) (рис. 1). Позднее CRISPRs были обнаружены у многих бактерий и архей (35), и примерно в то же время были сделаны прогнозы об их возможной роли в репарации ДНК или регуляции работы генов (36, 37). Ключевой момент наступил в 2005 году, когда в результате наблюдений выяснилось, что многие разделительные последовательности (спейсеры) в пределах CRISPRs происходят из плазмид или имеют вирусное происхождение(38-40). Вместе с открытием, что CRISPR локусы транскрибируются (41) и наблюдением того, что cas (CRISPR- ассоциированные) гены кодируют белки с предполагаемыми нуклеазными и геликазными доменами (38, 40, 42, 43), было выдвинуто предположение о том, что CRISPR-Cas является системой приобретённой защиты, которая может использовать антисмысловые РНК, как «память» о прошлых вторжениях (44). В 2007 году было предоставлено первое экспериментальное доказательство CRISPR-Cas-опосредованного адаптивного иммунитета в эксперименте с инфицированием литическими фагами молочнокислой бактерии Streptococcus thermophilus  (45). Это открытие привело к идее о том, что природные CRISPR-Cas системы, существующие в культуре бактерий, используемых в молочной промышленности, могут быть использованы для иммунизации против фагов — первого успешного применения CRISPR-Cas для биотехнологических целей (46). В 2008 году было показано, что зрелые CRISPR РНК (crRNAs)  служат в качестве гида (направляющей последовательности) в комплексе с белками Cas для противостояния распространению вируса в E.coli (47). В том же году, ДНК-направленная активность системы CRISPR-Cas была обнаружена в патогенном штамме Staphylococcus epidermidis (48).

Функциональные CRISPR-Cas локусы  состоят из CRISPR кассеты, состоящей из одинаковых повторов со вставленным между ними спейсерами, которые направленно взаимодействуют с чужеродной ДНК и  кодируют компоненты crRNA и из оперона генов cas, кодирующих компоненты Cas белка. В природе, вирусы могут быть соотнесены с их хозяином бактерией или археей с помощью анализа CRISPR спейсеров (49, 50). Эти исследования показали, что вирусы постоянно видоизменяются, чтобы уклониться от CRISPR-опосредованного ослабления.

Формирование приобретенного иммунитета происходит в три стадии [для недавних обзоров см. (51-53)]: (i) вставка короткой последовательности чужеродной ДНК в CRISPR кассету; (ii) транскрипция пре-crРНК (полиспейсерный предшественник CRISPR-РНК), которая проходит созревание, чтобы образовать отдельно взятые crRNAs, каждая из которых состоит из части-повтора и части-спейсера, направленного на чужеродную ДНК; (iii) crRNA-направленное разрезание чужеродной нуклеиновой кислоты с помощью Cas белков в сайтах, комплементарных последовательности спейсера crRNA (протоспейсеры). В рамках этой общей темы, три типа CRISPR-Cas системы (I, II и III) используют прямые молекулярные механизмы, чтобы достичь узнавания нуклеиновой кислоты и её разрезания (54,55). Мотив, прилежащий к протоспейсеру (The protospacer adjacent motif (PAM))- это короткий мотив, соседствующий с последовательностью чужеродной ДНК, на которую направленно воздействует crRNA, играет важную роль в стадиях адаптации (узнавании и присоединении) и интерференции в системах I и II типа (39, 56-58). Системы I и III-го типов используют большой комплекс Cas протеинов для crRNA-направленного таргетинга (47, 59-63). В то время как система II-го типа нуждается лишь в одном белке для РНК-направленного узнавания и разрезания ДНК (64,65), и именно это свойство оказалось чрезвычайно полезным для манипуляций в геномной инженерии (смотри ниже).Хронология научных исследований в области биологии CRISPR-CAS и геномной инженерии. Здесь показаны лишь основные события в обеих областях. Эти две области объединились в 2012 году в связи с открытием того, что белок Cas9 является РНК-программируемой эндонуклеазой ДНК. В конечном итоге привело к тому, что, начиная с 2013 года, огромное количество работ было опубликовано, в которых Cas9 был использован для модификации генов в клетках человека, а также в других типах клеток и организмов.

 

Рис. 1. Хронология научных исследований в области биологии CRISPR-CAS и геномной инженерии. Здесь показаны лишь основные события в обеих областях. Эти две области объединились в 2012 году в связи с открытием того, что белок Cas9 является РНК-программируемой эндонуклеазой ДНК. В конечном итоге привело к тому, что, начиная с 2013 года, огромное количество работ было опубликовано, в которых Cas9 был использован для модификации генов в клетках человека, а также в других типах клеток и организмов. Изображение: журнал Science.

 

Функциональность CRISPR-Cas9

 

Первоначально биоинформатические анализы определили Cas9 (ранее COG3513, Csx12, Cas5 или Csn1), как огромный многофункциональный белок (36) с двумя предполагаемыми нуклеазными доменами, HNH (38, 43, 44) и RuvC-подобным (44). Дальнейшие генетические исследования показали, что Cas9 S.thermophilus крайне необходим для защиты против вирусной инвазии (45,66), и также может быть ответственен за двухцепочечные разрывы в проникших в клетку плазмидах и фагах (67). Также Cas9 позволяет in vivo таргетинг умеренных фагов и плазмид в бактерии (66,68), и требует наличия HNH и RuvC доменов, чтобы препятствовать эффективной трансформации плазмиды (68).

 

В 2011 году (66) исследования показали, что транс-активирующая crRNA — маленькая РНК, которая транс-закодирована перед локусом CRISPR-Cas типа II в геноме Streptococcus pyogenes – оказалась необходимой для созревания crRNA РНКазой III и белком Cas9, и, как выяснилось, tracrRNA — опосредованное активирование созревания crRNA обеспечивает последовательность-специфичный иммунитет против геномов паразитов. В 2012 году (64), было показано, что белок CRISPR-Cas9 штамма S.pyogenes является двойной-РНК-направляемой эндонуклеазой ДНК, который использует дуплекс tracrRNA:crRNA (66), чтобы обеспечить направленное разрезание ДНК (64) (рис.2). Cas9 использует свой HNH домен для разрезания нити ДНК, комплементарной 20-нуклеотидной последовательности crRNA; RuvC-подобный домен Cas9 разрезает нить ДНК напротив комплементарной цепочки (противоположную цепочку, некомплементарную crRNA- прим. переводчика) (64,65) (рис.2). Мутация в любом из двух доменов в Cas9 создает вариант белка с функцией  одноцепочечного разрезания ДНК (никаза). В свою очередь, мутация в обоих доменах (dCas9; Asp10 →Ala, His840→Ala) создает РНК-направляемый белок, связывающийся с ДНК (64,65). Узнавание ДНК-мишени требует и спаривания оснований с последовательностью crRNA, и присутствия короткой последовательности (PAM), прилежащей к последовательности-мишени в ДНК (64,65) (рис.2).

 

Двойная tracrRNA:crRNA была сконструирована как химерная одиночная направляющая РНК (sgRNA), сохраняющая в себе две важнейшие характеристики: 20-нуклеотидную последовательность на 5’ конце sgRNA, которая определяет сайт-мишень на ДНК по принципу комплементарности, и двухцепочечную структуру (шпильку) на 3’ конце направляющей последовательности, связывающаяся с Cas9 (64) (рис.2). Эта разработка привела к созданию простой двухкомпонентной системы, в которой изменения в направляющей последовательности (20 нуклеотидов в исходной РНК) sgRNA могут быть использованы для направленного воздействия на любую интересующую ДНК последовательность до тех пор, пока она соседствует с PAM (64). В отличие от ZFNs и TALENs, которые требуют существенных изменений в белке для каждого сайта-мишени ДНК, CRISPR-Cas9 система требует только изменения в последовательности направляющей РНК. Поэтому CRISPR-Cas9 технология, использующая систему S.pyogenes, была очень быстро и повсеместно принята научным обществом для таргетинга, редактирования и модифицирования геномов большого спектра клеток и организмов. Филогенетические исследования (69-71), также как и эксперименты in vivo и in vitro (64,71,72), показали, что природные ортологи Cas9, из-за определенной специфичности Cas9 к дуплексам РНК (69-71), используют различные tracrRNA:crRNA транскрипты, как направляющую последовательность   (рис.3). Описанная коллекция Cas9 ортологов содержит в себе огромный источник CRISPR-Cas9 систем для множественного таргетинга генов, и несколько ортологичных CRISPR-Cas9 систем уже были применены для успешного редактирования генома в человеческих клетках [Neisseria meningitidis (73, 74), S. thermophilus (73, 75), и Treponema denticola (73)].

 

Хотя акроним CRISPR и привлек внимание СМИ и теперь широко используется в научной и массовой литературе, почти все приемы редактирования генома основываются на применении белка Cas9 вместе с подходящими sgRNA. Как описывалось выше, CRISPR относится к повторяющейся природе повторов в CRISPR- кассете, которые кодируют crRNAs, и сам термин «CRISPR» не относится непосредственно к геномной инженерии. Тем не менее, мы предпочитаем использовать обозначение «CRISPR-Cas9» именно таким образом, несмотря на то, что использование этого термина является менее строгим, по сравнению с другими терминами, используемыми в этой области (76).

 

Механизм CRISPR-Cas9- опосредованного таргетинга генома

 

Структурный анализ белка Cas9 S.pyogenes выявил дополнительные сведения о механизме работы CRISPR-Cas9 (рис.3). Молекулярные структуры Cas9, установленные с помощью электронной микроскопии и рентгеновской кристаллографии, показали, что белок подвергается сильной конформационной перегруппировке непосредственно после связывания с направляющей РНК, а также дальнейшим изменениям при ассоциации с целевой двунитевой ДНК (дцДНК). Это изменение создает канал, находящийся между двумя структурными долями белка, который связывается с РНК-ДНК гибридом,  и  соосно упакованной двойной направляющей РНК структуре, соответствующей взаимодействию crRNA повтор- tracrRNA антиповтор (77,78). Богатая аргинином альфа спираль (77-79), соединяющая две структурные доли Cas9 играет ключевую роль в связывании с направляющая-РНК – ДНК-мишень гибридом,  как было показано при помощи мутагенеза (77,78) и также, вероятно, является «шарниром» между ними. Конформационное изменение в Cas9 может быть частью механизма раскручивания двухцепочечной ДНК-мишени и направлять интерференцию РНК, но эту теорию еще предстоит проверить. Исследования также показали, что РАМ является ключевым элементом для первоначального связывания с ДНК; при отсутствии РАМ последовательности-мишени не распознаются Cas9, даже если они полностью комплементарны последовательности направляющей РНК (80). Кристаллическая структура Cas9 в комплексе с направляющей РНК и частично с двухцепочечной ДНК-мишенью показывает, что РАМ находится в пределах ДНК (неспаренной с РНК-гидом — прим. переводчика) (81). Аргининовые мотивы в С-концевом домене Cas9 взаимодействуют с PAM на некомплементарной цепочке внутри большой бороздки. Фосфодиэфирная группа в положении +1 в цепочке ДНК-мишени взаимодействует с малой бороздкой дуплексной PAM, что, вероятно, может привести к локальному расхождению цепей, так называемой R-петли, непосредственно перед PAM (81). Эксперименты с одиночной молекулой также показывают, что на скорость образования R-петли влияет, прежде всего, PAM, в то время как стабильность R-петли в основном зависит от  элементов протоспейсера дистальных к PAM (82).
Вместе с одно молекулярными и объемными биохимическими экспериментами с использованием мутантных ДНК-мишеней, предполагаемый механизм основывается на том, что плавление ДНК-мишени начинается на уровне распознавания PAM, в результате чего происходит направленное формирование R-петли, расширяющейся по направлению к дистальному концу протоспейсера,что сопутствует интерференции цепи РНК и образованию РНК-ДНК гибрида (80-82).
Для того, чтобы оценить поведение Cas9 при связывании с мишенью в клетках, исследователи использовали иммунопреципитацию хроматина и высокопроизводительное секвенирование (ChIP-seq), с целью определения количества и типов сайтов связывания Cas9 в хромосоме. Результаты показали, что в клетках эмбриональной почки человека (HEK293) (83),  и в мышиных эмбриональных стволовых клетках (mESCs) (84), количество сайтов связывания каталитически неактивной версии Cas9 превосходило количество сайтов, которые соответствовали последовательности sgRNA, используемой в каждом случае. Такие off-target (мимо, промах) взаимодействия с ДНК, происходившие, как правило, на участках, несущих PAM и частично комплементарную направляющей РНК последовательность, согласуются с установленными режимами узнавания ДНК Cas9 (80). Активные Cas9 редко разрезают ДНК в off-target сайтах связывания, что свидетельствует о несвязанности друг с другом событий связывания с ДНК и ее разрезания, в которых необходима почти идеальная комплементарность между направляющей РНК и сайтом-мишенью для эффективного разрезания ДНК. Эти наблюдения согласуются с результатами, полученными для Cas9-РНК-направляемых комплексов в экспериментах с одной молекулой (80). Более того, события связывания Cas9 происходят чаще в районах деконденсированного хроматина по сравнению с областями компактного, транскрипционно- неактивного хроматина.
Тем не менее, поскольку метод включает в себя кросс-линкинг (связывание, сшивание) клеток на ~ 10 мин перед гашением реакции, то становится трудно различить кратковременные и продолжительные связывающие взаимодействия. Вполне возможно, что многие из кажущихся off-target взаимодействий ДНК на самом деле отражают кратковременные контакты, которые обычно не вызывают интерференцию направляющей РНК.

Биология системы CRISPR-Cas типа II-A. Данный рисунок иллюстрирует систему типа II-A штамма S.pyogenes. (А) оперон гена cas вместе с tracrRNA и CRISPR кассетой. (B) Естественный путь противовирусной защиты включает в себя несколько стадий: 1)ассоциацию белка Cas9 с антипараллельным РНК-дуплексом (tracrRNA:crRNA) 2)совместный процессинг нескольких РНК дуплексов РНКазой III 3)от получившихся обрезков отрезаются еще кусочки, в результате чего и получается полностью созревшая crРНК. 4)формирование R-петли 5)разрезание ДНК-мишени Рис. 2. Биология системы CRISPR-Cas типа II-A. Данный рисунок иллюстрирует систему типа II-A штамма S.pyogenes. (А) оперон гена cas вместе с tracrRNA и CRISPR кассетой. (B) Естественный путь противовирусной защиты включает в себя несколько стадий: 1) ассоциацию белка Cas9 с антипараллельным РНК-дуплексом (tracrRNA:crRNA) 2) совместный процессинг нескольких РНК дуплексов РНКазой III 3) от получившихся обрезков отрезаются еще кусочки, в результате чего и получается полностью созревшая crРНК. 4) формирование R-петли 5) разрезание ДНК-мишени (C ) подробное рассмотрение механизма природного разрезания ДНК с помощью дуплекса tracrRNA:crRNA. Изображение: журнал Science.

 

Конструируя клетки и организмы – модели

Проведенные в январе 2013 года,  после публикации в 2012 году Jinek и коллегами (64), три исследования  показали, что CRISPR-Cas9 является эффективным инструментом в редактировании генома человеческих клеток (75,85,86). «Очеловеченные» версии белка Cas9 штамма S.pyogenes (75,85,86) и белка Cas9 штамма S.thermophilus (75) были совместно экспрессированы со специально разработанными sgRNAs или вместе с молекулой tracrRNA, коэкспрессированной со специально разработанными crRNAs (75).
Эти процессы прошли успешно не только в клетках человеческой эмбриональной почки, клетках хронического миелолейкоза, или в индуцированных плюрипотентных стволовых клетках (75,85,86), но и в клетках мыши (75). Наблюдались ожидаемые изменения в целевой ДНК, которые указывали на то, что сайт-специфичные двухцепочечные разрывы с помощью РНК-направляемого Cas9 стимулировали редактирование гена при помощи негомологичного соединения концов (при репарации ДНК) (nonhomologous end joining repair (NHEJ)) или замену гена при помощи направляемой гомологией репарации (homology-directed repair (HDR)) (рис.4). Также был успешно достигнут таргетинг с помощью большого количества sgRNAs – именуемый мультиплексинг (75,86). В настоящее время РНК-программируемое Cas9 S.pyogenes— опосредованное редактирование применяется в различных человеческих клетках и эмбриональных стволовых клетках [(87-90); для ознакомления, см. (91-93)]. Некоторые исследования показывают, что эффективность CRISPR-Cas9-опосредованного редактирования,  может достигнуть 80% и более, что выше , чем и у ZFNs или TALENs, даже не смотря на то, что прямое сравнение эффективности этих методов осложняется различием в сайтах-мишенях и уровне экспрессии белка (89,94).

Эти исследования были только началом того, что в итоге стало невероятно быстро развивающейся по всему миру областью, в которой лаборатории использовали CRISPR-Cas9, чтобы редактировать геномы широкого спектра типов клеток и организмов (обобщено в рис.5). На момент написания этой статьи, уже  издано более 1000 работ , которые включали в себя акроним CRISPR в заголовке или в выдержке, причем большинство из них публиковались только с начала 2013. Большинство вариантов применения этой технологии уже обсуждались в недавних обзорных статьях (91-93). Здесь мы выделяем всего несколько примеров, которые показывают всю мощь этой технологии (рис.6).

Во-первых, это очень точное воспроизведение опухоль-ассоциированных хромосомных транслокаций, которые происходят во время канцерогенеза с помощью незаконного негомологичного соединения двух хромосом. Способность CRISPR-Cas9 производить двухцепочечные разрывы в определенных местах сделала возможным создании линий человеческих клеток  и первичных клеток, носящих в себе такие же хромосомные транслокации, как и в клетках рака легких (95), острой миелоидной лейкемии и саркомы Юинга (96,97). Недавно опубликован метод создания моделей рака печени или злокачественной миеломы у мышей при помощи CRISPR-Cas9 (98,99). Таким образом, CRISPR-Cas9 предоставляет нам надежную технологию для изучения геномных перестроек, а так же патогенеза рака или других болезней.

Во-вторых, это систематический анализ функций генов в клетках млекопитающих.  Библиотека лентивирусных sgRNA для всего генома была разработана, чтобы создать общий подход генетического скрининга «потери функции», удобный как для позитивного, так и для негативного отбора (100,101). Этот подход был также использован для определения генов, необходимых для жизнеспособности клеток рака и плюрипотентных стволовых клеток (102). И хотя уже пытались проводить аналогичные исследования, используя РНК-интерференцию (RNAi), чтобы уменьшить экспрессию генов, но такой метод не позволяет нокаутировать гены и  характеризуется существенными off-target эффектами. Использование CRISPR-Cas9 для полногеномного исследования предоставит возможность полномасштабного скрининга мишеней для лекарственных препаратов и других фенотипов и, таким образом, повысится практическая польза и увеличится само число видов генетических скриннингов человека и других немодельных клеток и организмов.

 

Cas9 направляемый (слева) Cas9 направляемый Дуплексом crRNA:tracrRNA одиночной направляющей РНК Linker loop- соединяющая петля (справа) Эволюция и структура Cas9. Структура Cas9 штамма S.pyogenes в лиганд-независимой форме и в форме связанных РНК и ДНК [из (77, 81)].

Рис. 3. Cas9 направляемый
(слева)
Cas9 направляемый
Дуплексом crRNA:tracrRNA одиночной направляющей РНК
Linker loop- соединяющая петля
(справа)
Эволюция и структура Cas9. Структура Cas9 штамма S.pyogenes в лиганд-независимой форме и в форме связанных РНК и ДНК [из (77, 81)]. Изображение: журнал Science.

 

Другими подходящими примерами применения CRISPR-Cas9, имеющих отношение к человеческому здоровью, является  корректировка генетических мутаций, ответственных за наследственные заболевания. Успешно была исправлена доминантная мутация у мышей в гене Crygc, вызывающая катаракту (103). CFTR локус (Трансмембранный регулятор муковисцидоза) был исправлен при помощи гомологичной рекомбинации в культивированных первично взрослых кишечных стволовых клетках, полученных от пациентов с муковисцидозом. В результате чего произошло, увеличение колонии органоподобных клеточных культур- органоидов (органоиды – функциональные многоклеточные образования с исправленным геномом, аутологичные по отношению к донору клеток, которые могут быть введены обратно в организм больного – прим.пер.), несущих нужное генетическое изменение (104). Эти исследования подчеркивают потенциал этой технологии, которая может использоваться для генной терапии человека при лечении генетических заболеваний.

Последним примером системы CRISPR-Cas9, как технологии геномной инженерии, является применение на растениях и грибах. С момента  демонстрации её в качестве инструмента для редактирования генома на Arabidopsis thaliana и Nicotiana benthamiana (105, 106), было показано редактирование генома культурных растений, в том числе, риса, пшеницы и сорго, а также сладкого апельсина и печеночника (107-111). Эта технология обещает изменить темп и направление сельскохозяйственных исследований. Например, в недавнем исследовании риса обнаружили, что гены-мишени были отредактированы в почти 50%  клеток зародыша, получивших конструкции Cas9-направляющая-РНК и редактирование произошло до деления первой клетки (112). Кроме того, эти генетические изменения были переданы следующему поколению растений без новой мутации или реверсной мутации, а секвенирование всего генома не выявило существенного off-target редактирования. Такие данные позволяют предположить, что модификация геномов растений для обеспечения защиты от болезней и устойчивости к вредителям, может быть гораздо проще, чем это было в случае с другими технологиями. Регулирующее значение технологии CRISPR-Cas9 для использования в растениях пока еще не совсем ясно, и, безусловно, зависит от типа мутации (ий), которую (ые) нужно будет ввести.

В целом, отсутствие эффективных, недорогих, быстро создаваемых и простых в использовании, точных генетических инструментов, так же было ограничивающим фактором при анализе функций генов у модельных организмов в биологии развития и регенеративной биологии. Геномная инженерия, с помощью технологии  CRISPR-Cas9 , дает возможность делать эффективные направленные геномные модификации зародышевой линии  в таких модельных организмах, как мухи дрозофилы (113,114), рыба-зебра (94,115), круглые черви (116), саламандры (117) и лягушки (118,119). Эта технология также может облегчить создание более подходящих для фармакологических исследований и понимания человеческих болезней моделей таких организмов, как мыши (120-122) и крысы (123,124), а также свиньи (125) и обезьяны (126). В общем и целом, CRISPR-Cas9 уже оказывает серьезное влияние  на функциональные геномные эксперименты, которые могут быть проведены в этих модельных организмах, и с помощью которых мы продвинемся в области экспериментальной биологии способами,  нереальными еще пару лет назад.

Рис. 4. CRISPR-Cas9 как инструмент геномной инженерии А) Различные варианты внесения тупых двух цепочечных разрывов ДНК в локусах генома, которые в дальнейшем будут объектом эндогенной репарации ДНК, которая катализирует либо негомологичное сшивание концов (NHEJ), либо гомологическую репарацию (HDR). В) Cas9 может работать, как никаза (nCas9), при условии, что один из ее активных доменов инактивирован. Когда nCas9 используется с двумя sgRNAs, которые распознают различные сайты в ДНК-мишени, то происходит смещенный двух цепочечный разрыв С) Cas9 может функционировать, как РНК-направляемый связывающийся с ДНК белок, но только если был модифицирован таким образом, что оба его активных домена окажутся инактивированными. Такая каталитически неактивная форма или «мертвая» (dCas9- от англ. dead- мертвый - прим. Пер.) может быть использована, как медиатор увеличения или уменьшения транскрипционной активности, особенно если dCas9 сплавен с эффекторным доменом (активатором или репрессором). Кроме того, dCas9 может быть сплавлен с флуорисцентными доменами, такими как, например, зеленый флуорисцентный белок (green fluorescent protein- GFP), для визуализации локусов в хромосомах в живых клетках. Если же dCas9 сплавить с другими доменами, такими как хроматин или ДНК модифицирующие домены, то можно получить инструмент для направленных эпигенетических изменений в геномной ДНК. Рис. 4.
CRISPR-Cas9 как инструмент геномной инженерии
А) Различные варианты внесения тупых двухцепочечных разрывов ДНК в локусах генома, которые в дальнейшем будут объектом эндогенной репарации ДНК, катализируещей либо негомологичное сшивание концов (NHEJ), либо гомологическую репарацию (HDR).
В) Cas9 может работать, как никаза (nCas9), при условии, что один из ее активных доменов инактивирован. Когда nCas9 используется с двумя sgRNAs, которые распознают различные сайты в ДНК-мишени, то происходит смещенный двухцепочечный разрыв
С) Cas9 может функционировать, как РНК-направляемый связывающийся с ДНК белок, но только если был модифицирован таким образом, что оба его активных домена окажутся инактивированными. Такая каталитически неактивная форма или «мертвая» (dCas9- от англ. dead- мертвый — прим. Пер.) может быть использована, как медиатор увеличения или уменьшения транскрипционной активности, особенно если dCas9 сплавлен с эффекторным доменом (активатором или репрессором). Кроме того, dCas9 может быть сплавлен с флуорисцентными доменами, такими как, например, зеленый флуорисцентный белок (green fluorescent protein- GFP), для визуализации локусов в хромосомах в живых клетках. Если же dCas9 сплавить с другими доменами, такими как хроматин или ДНК модифицирующие домены, то можно получить инструмент для направленных эпигенетических изменений в геномной ДНК. Изображение: журнал Science.

 

Развитие этой технологии в будущем

Ключевым достоинством Cas9 является его способность связываться с сайтами, которые определены последовательностью направляющей РНК и РАМ, что дает возможность применения за пределами длительной модификации (модификация, вызываемая факторами среды и способная сохраняться на протяжении ряда поколений, через определенный промежуток времени организм возвращается к исходному признаку; Д. м. связана с воспроизводящимися в ряду клеточных поколений изменениями цитоплазмы, что сближает её с материнским эффектом, и возникает, как правило, при вегетативном или партеногенетическом размножении — прим. пер.). В частности, каталитически инактивированная  версия Cas9 (dCas9) была многократно использована для направленной регуляции генов в масштабе всего генома. Упомянутая выше CRISPR интерференция (CRISPRi), показала, что может блокировать элонгацию в процессе транскрипции, связывание РНК полимеразы или связывание транскрипционных факторов, в зависимости от сайта (ов), узнаваемых комплексом dCas9-направляющая РНК. Впервые примененная интерференция на E.coli, секвенирование всего генома не обнаружило каких либо off-target эффектов (127). CRISPRi использовалась для одновременной репрессии нескольких генов, и эффекты этой интерференции оказались обратимого характера (127-130).

Как было отмечено у бактерий, сайт (ы) регулирования были распознаны только коэкспрессированной (ыми) направляющей (ими) РНК для dCas9. Анализ последовательности РНК показал, что CRISPRi- направленная репрессия транскрипции является высокоспецифичной. В более широком смысле, эти результаты показали, что dCas9 может быть использован в качестве модульной и гибкой ДНК-связывающейся платформы для накопления белков способных направленно воздействовать на последовательность ДНК-мишени. Это закладывает основу для будущих экспериментов, включающих скрининг всего генома, схожий с таковым который  использовался с РНК-интерференцией. Отсутствие систем CRISPR-Cas у эукариот является важным преимуществом CRISPRi над  РНК-интерференцей в различных областях применения, в которых конкуренция с эндогенными путями является проблематичной. Например, использование РНК-интерференции для сайелинсинга генов, которые сами являются частью пути РНК-интерференции (белки Dicer, Argonaute), может привести к тому, что результаты будет трудно интерпретировать из-за большого количества прямых и косвенных эффектов. Кроме того, любые РНК, которые используется для сайеленсинга определенных генов, могут конкурировать в клетке с эндогенной РНК-опосредованной регуляцией генов. CRISPR- Cas9 предоставляет большую универсальность в осваиваемых альтернативах благодаря своей способности постоянно менять генетический код и усиливать или уменьшать экспрессию гена на транскрипционном или посттранскрипционном уровнях. В то же время, РНК-интерференция ограничивается лишь «нокаутированием» генов. Хотя технология РНК-интерференции и улучшается с годами, неполное «нокаутирование» генов и непредсказуемое off-target взаимодействие до сих  пор являются уязвимым местом этой технологии. Именно поэтому, сравнительные анализы двух данных технологий должны обратить свое внимание на превосходство технологии CRISPRi над RNAi именно в этих аспектах. Стало возможным использовать CRISPRi для эффективной регуляции генов в клетках млекопитающих с помощью созданной химерной версии dCas9, связанных с регуляторными доменами. В частности, связывание dCas9 с эффекторными доменами (в том числе с VP64 и KRAB) сделало возможным стабильную и эффективную активацию или репрессию транскрипции в клетках человека и дрожжей, соответственно (129).

Программируемая связывающая способность dCas9 может быть использована для визуализации  специфических локусов в живых клетках. С помощью усовершенствованного зеленым флуорисцентным белком dCas9 и структурно оптимизированной sgRNA были получены изображения повторяющихся и неповторяющихся элементов  в теломерах и кодирующих генах в живых клетках (131). Эта CRISPR визуализация потенциально может улучшить существующие технологии для изучения конформационной динамики хромосом в живых клетках, особенно если будет разработана технология много цветовой визуализации при помощи большого числа различных Cas9 белков.

Новые технологии, направленные на разрушение провирусов, могут быть использованы для элиминирования вирусного генома у инфицированных индивидов и, как следствие, несущих инфекцию. Привлекательность этого подхода состоит в том, что в нем используется основная функция CRISPR-Cas9, а именно — адаптивный иммунитет у бактерий. Направленный метод CRISPR-Cas9 показала, что может эффективно разрезать и видоизменять (мутировать) длинные концевые повторы  HIV-1, а также удалять вирусные гены из хромосом инфицированных клеток (132,133).

Рисунок 5

Примеры типов клеток и организмов, которые были модифицированы с помощью Cas9

 

Биология Биотехнология Биомедицина
Клеточные линии Модельные организмы Сельско-хозяйственные культуры Грибы
  1. Органоиды
  2. hESCs
  3. iPSCs (ИПСК)
  1. HEK293
  2. U2OS
  3. K562
  1. Мыши
  2. Крысы
  3. Дрозофилы
  4. Круглые черви
  5. Arabidopsis
  6. Саламандры
  7. Лягушки
  8. Обезьяны
  1. Рис
  2. Пшеница
  3. Сорго
  4. Табак
  1. Kluyveromyces
  2. Chlamydomonas

CRISPR-Cas9  является перспективной технологией в области геномной инженерии и синтетической биологии. Был разработан множественный (мультиплексный) CRISPR -подход, чтобы облегчить направляемую эволюцию биомолекул, именуемый CRISPRm (134). CRISPRm заключается в оптимизации системы CRISPR-Cas9 для усиления самосборки генов, а также для вставки из ДНК -библиотеки в геном грибов. Этот процесс дает возможность увеличить активность биомолекул. Кроме того, стало возможным заставить Cas9 связываться с одноцепочечной РНК при помощи коротких ДНК олигонуклеотидов, которые можно менять, содержащих РАМ последовательность (РАМмеры). Этот метод используется для активации фермента и предлагает новые методы для таргетинга транскриптов без предварительного афинногого мечения (135).

Исследования показали, с какой эффективностью происходит таргетинг и разрезание РНК-программируемым белком Cas9 штамма S.pyogenes,  а также  уровень его специфичности с помощью наблюдения за уровнем off-site таргетинга (136-140). Off-site таргетинг определяется нечувствительностью Cas9 к несоответствиям в последовательности направляющей РНК и зависит от количества, позиции и  разброса этих несовпадений во всей последовательности направляющей РНК (136-140) за пределами затравочной последовательности,  определенной, как первые 8-12 нуклеотидов направляющей последовательности, проксимальной к РАМ (64) (рис.2). Количество экспрессируемого в клетке фермента Cas9- важный фактор в нечувствительности к несовпадениям (138). Как было показано, высокие концентрации фермента  увеличивают количество off-site таргетинга, в то время как уменьшение концентрации ведет к увеличению специфичности, но опять же, понижает активность разрезания мишени (137). Несколько групп разработали алгоритм, который может выдать последовательность оптимальной sgRNA с минимальными off-target эффектами (например, http://tools.genome-engineering.org, http://zifit.partners.org, и www.e-crisp.org) (141–145). Развитие альтернативных технологий для полногеномного редактирования привед к тому, что также будут рассмотрены другие особенности этой реакции, такие как термодинамические свойства sgRNA, которые позволят в дальнейшем повысить специфичность каждой конструкции.

Ряд исследований технологии CRISPR-Cas9 относятся к особенностям ДНК таргетинга (рис.4): подход, заключающийся в двойном никовании (внесении одно цепочечного разрыва в ДНК — прим. пер.), состоит в использовании никазных вариантов Cas9 с двумя смещенными друг относительно друга sgRNAs, правильно расположенными на ДНК-мишени (146-148); sgRNA-направляемый белок dCas9, сплавленный с нуклеазой FokI, в котором два сплавленных dCas9-FokI мономера могут одновременно связываться с сайтами-мишенями на заранее определённом расстоянии друг от друга (149,150);  короткие sgRNAs, усеченные на два или три нуклеотида на дистальном конце относительно РАМ, могут быть использованы с технологией «двойного никования» для дальнейшего уменьшения off-target активности (151). Первые два метода основываются на димеризации Cas9, схожей с таковой у сконструированных димеров ZFNs и TALENs, но с упором на то, что два соседствующих off-target связывания с последующим разрезанием произойдут с меньшей вероятностью, чем одно off-target разрезание (146-150). Недавно открытый метод основывается на утверждении, согласно которому, нуклеотиды на 5’-конце sgRNAs не являются обязательными для ее полной активности; однако, эти нуклеотиды могут скорректировать несоответствия в других позициях вдоль комплекса направляющая РНК-ДНК-мишень, и, таким образом, укороченные sgRNAs могут быть более специфичны (151). В будущем, исследования сфокусируются на дальнейшем развитии точности этой технологии, а также на увеличении частоты гомологической репарации относительно негомологичного соединения концов, чтобы способствовать сайт-специфической вставки новой генетической информации.

Рис. 6. Будущие применения в биотехнологии и биомедицине

Рис. 6.
Будущие применения в биотехнологии и биомедицине. Изображение: журнал Science.

Будущее CRISPR-Cas9-опосредованной геномной инженерии

Генная терапия человека Сельское хозяйство: растения, животные Синтетическая биология; изменение путей выработки определенных веществ Программируемый—РНК таргетинг Нокаутирование вирусных и патогенных
генов
Экологический контроль за переносчиками заболеваний (стерилизация комаров) Скриннинги для
идентификацией мишеней для лекарств

Выводы и перспективы

Наше понимание нормальной физиологии, направленного развития геномов и болезней у высокоорганизованных организмов было затруднено недостатком подходящих инструментов для точной и эффективной генной инженерии. Простая двух компонентная система CRISPR-Cas9, использующая принцип комплементарности в узнавании последовательностей ДНК-мишени при помощи направляющей РНК, является универсальной технологией, которая стимулирует развитие инновационных применений в биологии. Понимание CRISPR-Cas9 системы на биохимическом и структурном уровне позволяет создать варианты белка Cas9 с меньшими размерами и увеличенной специфичностью. Например, кристаллическая структура меньшего белка Cas9 грибов Actinomyces является примером того, как природа создала усовершенствованный фермент,  заложивший основы для будущих искусственно собранных вариантов Cas9 (77). Глубокий анализ большего числа естественно эволюционирующих бактериальных ферментов Cas9 может выявить ортологи с различной специфичностью к связыванию с ДНК, что в дальнейшем может расширить выбор РАМs, и, кончено же, откроет нам укороченные варианты, более подходящие для доставки в человеческие клетки.

Кроме того, конкретные методы доставки Cas9 и его направляющей РНК в клетки и ткани должны принести пользу генной терапии человека. Например, недавние эксперименты подтвердили, что комплекс Cas9-РНК может быть введен напрямую в клетки при помощи нуклеофекции  (метод невирусной трансфекции клеточных линий, заключается в образовании пор в клеточной мембране с помощью электрических импульсов и последующего внедрения в клетку генетического материала, она же – электропорация — прим. пер.) и при помощи пронизывающих клетку пептидов для обеспечения быстрого и выверенного по времени редактирования (89,152), а также происходит проверка трансгенных организмов, экспрессирующих Cas9 с регулируемого промотора. Многообещающим предвестником всплеска будущих исследований в этой области является недавняя демонстрация того, как комплексы Cas9-направляющая РНК, введенные во взрослую мышь, показали высокий уровень редактирования в клетках печени, с целью облегчить течение генетического заболевания (153). Понимание того, с какой частотой происходят гомологические репарации после Cas9-опосредованного разрезания ДНК, даст ускорение развитию этой области, благодаря возможности эффективной вставки новых или исправленных последовательностей в клетки и организмы. В частности, стремительное развитие этой области повысило градус полемики вокруг коммерческого применения системы CRISPR-Cas9.

Эпоха непосредственного редактирования генома поднимает ряд этических вопросов, на которые необходимо ответить  ученым и обществу в целом. Каким образом мы можем использовать этот мощный инструмент так, чтобы обеспечить  максимальную выгоду при минимальных рисках? Крайне важным является то, что даже люди, не являющиеся учеными-биологами, понимают основы этой технологии, что упрощает её публичное обсуждение. Регулирующие органы также должны рассмотреть, как лучше развивать  ответственное использование технологии CRISPR-Cas9 без вреда для  исследований и разработок.
Открытие возможностей технологии CRISPR-Cas9 еще раз подчеркивает то, что огромное количество открытий, давших толчок развитию молекулярной биологии и медицины, проистекают из фундаментальных исследований механизмов репликации ДНК, репарации ДНК и защиты против вирусов. Технология CRISPR-Cas9 прошла через схожий путь: после того, как мы поняли механизм, лежащий в основе работы системы CRISPR-Cas9, это знание может быть использовано в молекулярной биологии и генетике там, где мы даже не могли предвидеть.

 Оригинал статьи

Перевод:  Станислав Груздев

Источник: medach.pro

Трое в лодке: о легализации замены митохондрий

Недавно появилась надежда, что дети в Соединенном королевстве смогут иметь трех родителей: члены палаты общин парламента Великобритании проголосовали за легализацию процедуры замещения митохондрий. Идея одобренной технологии состоит в экстракорпоральном оплодотворении, в котором принимает участие материал от трех разных доноров, что позволяет предотвратить передачу наследственных митохондриальных заболеваний от матери ребенку.

doc photo.phpmito

 

Митохондриальная ДНК и ее «поломки»

Как известно, митохондрии — органеллы, отвечающие за энергоснабжение клетки, — несут собственную генетическую информацию, записанную в митохондриальной ДНК (мтДНК)*. Число генов в мтДНК обычно намного меньше, чем в «основной» ДНК клетки. Так, у человека мтДНК содержит последовательности 37 генов, из которых белок-кодирующими являются 13 (остальные последовательности кодируют рибосомальные и транспортные РНК) [1].

* — Несмотря на долгую ко-эволюцию, эта молекула по-прежнему немножко чужак для нашего организма: «Митохондриальная ДНК как иммуноген» [2]. Даже считываться и копироваться «по-людски» она так и не научилась: «Исследован переключатель процессов транскрипции и репликации в митохондриях» [3] — Ред.

01.genomnaja transplantacija

Рисунок 1. Геномная трансплантация: эксперименты по замене митохондрий. Инфографика из [5], адаптирована для русскоязычной аудитории.

Конечно, как и любая другая, митохондриальная ДНК подвержена накоплению мутаций, что может в конечном итоге приводить к тяжелым заболеваниям. Как правило, в первую очередь нарушаются функции тканей, потребляющих наибольшее количество энергии, — мозга, сердца, мышц. Cиндром Барта, синдром Лея, митохондриальная энцефаломиопатия, особая миоклоническая эпилепсия — это лишь малая часть длинного списка заболеваний, обусловленных повреждениями митохондрий [4].

В ходе оплодотворения именно материнские митохондрии (митохондрии яйцеклетки) передаются особи следующего поколения. Значит, накопленные в мтДНК матери мутации будут переданы ребенку. По оценкам, 1 из 5000 детей рождается с заболеваниями, вызванными такими мутациями [5]. И очень часто «семейные лодки» разбиваются о тяжелейший быт, связанный с воспитанием больного ребенка.

Замена митохондрий: истребляем недуг в зародыше

Предотвратить наследование губительных мутаций можно с помощью незамысловатой — на словах — процедуры, в основе которой лежит использование митохондрий от «третьего родителя». Разумеется, это можно сделать только при проведении экстракорпорального оплодотворения (ЭКО) [6]. Сначала готовят два набора клеток: яйцеклетки матери, содержащие дефектные митохондрии, и яйцеклетки женщины-донора с митохондриями, ДНК которых не несет опасных мутаций. Затем исследователи извлекают ядра материнских яйцеклеток и заменяют ими ядра яйцеклеток-доноров мтДНК. Альтернативным способом является пересадка пронуклеусов — мужского и женского — из оплодотворенной яйцеклетки. Обе технологии геномной трансплантации изложены в форме инфографики (рис. 1).

Заключительное слово

28 января 2015 года в журнале The New England Journal of Medicine было опубликовано письмо исследователей из университета Ньюкасла, в котором авторы отметили, что процедура замены митохондрий сможет помочь более чем двум тысячам британских женщин — по оценке ученых, именно столько представительниц прекрасного пола в Соединенном королевстве несет опасные мутации мтДНК [7].

Принятое решение можно без сомнения считать триумфом ученых, ведь удалось изменить закон, разрешающий эксперименты по геномной трансплантации исключительно в исследовательских целях.

Однако до безоговорочной победы еще далеко: палате лордов предстоит вынести свое решение по вопросу легализации применения технологии в клинической практике. Если закон будет одобрен палатой лордов, в силу он вступит только в октябре текущего года. Более того, клиникам, желающим предоставлять обсуждаемый вид генной терапии, будет необходимо получить специальное разрешение от Управления по оплодотворению и эмбриологии человека Великобритании (HFEA). И все же вероятно, что путь новой технологии до «клиники» и общественного признания не будет столь тернист, как это случилось с методом ЭКО, разработчики которого десятилетиями отбивались от «богоугодников» [6].

Исследователи надеются, что принятое палатой общин парламента Великобритании решение послужит толчком к принятию подобных решений правительствами других стран.

Литература

  1. Larsson N. and Clayton D.A. (1995). Molecular genetic aspects of human mitochondrial disorders. Annu. Rev. Genet29, 151–178;
  2. биомолекула: «Митохондриальная ДНК как иммуноген»;
  3. биомолекула: «Исследован переключатель процессов транскрипции и репликации в митохондриях»;
  4. Stockton N. How It’s Possible for a Baby to Have Three Parents. Wired. 04-02-2015;
  5. Callaway E. Scientists cheer vote to allow three-person embryos. Nature News. 03-02-2015;
  6. биомолекула: «“За экстракорпоральное оплодотворение” — это не тост, а Нобелевская премия!»;
  7. Gorman G.S., Grady J.P., Ng Yi, Schaefer A.M., McNally R.J., Chinnery P.F. et al. (2015). Mitochondrial donation — how many women could benefit? N. Engl. J. Med. doi: 10.1056/NEJMc1500960.

[12 февраля, 2015 г.]

Источник: http://biomolecula.ru/content/1567

Новая флуоресцентная краска повысила точность онкодиагностики

ce3cd1a3eb3a02dd6375b4b6b0e51e2b

Ученые из Стэнфордского и Уханьского университетов сообщили о создании новой флуоресцентной краски для медицинской диагностики. Результаты работы, в которых новая краска показывает себя лучше, чем используемый в настоящее время индоцианин зеленый, опубликованы в Nature Materials.

Существующие флуоресцентные краски активно применяются в медицине, но их действие «размыто» по первому инфракрасному диапазону (0,6-1,4 микрометра). Для более точной диагностики нужны краски с более прицельным действием, работающие строго в промежутке второго инфракрасного диапазона (1,0-1,4 микрометра), однако такие краски очень медленно выводятся из организма, поэтому они не применяются в медицине.

Исследователи создали флуоресцентную краску на основе синтетической органической молекулы CH1055 размером 970 дальтон (это относительно некрупная молекула). Подобный размер обеспечил быстрое выведение краски из организма: 90 процентов использованного вещества выводится через почки в течение 24 часов.

Эксперименты на лабораторных мышах показали, что новая краска превосходит по диагностическим свойствам широко используемый индоцианин зеленый. Снимки, полученные при использовании CH1055, были более четкими и яркими. «Просветив» лабораторную мышь, ученые впервые провели успешную операцию по удалению опухоли с использованием краски во втором инфракрасном диапазоне.

Флуоресцентные краски активно используются для медицинской диагностики, так как с их помощью можно локализовать опухоли. Действующее вещество запускается в кровеносную систему, после чего тело пациента сканируется прибором, который излучает на частоте инфракрасного спектра и вызывает люминесценцию атомов. Таким образом, можно отделять здоровые ткани от пораженных и проводить хирургические операции более точно.

Источник: nplus1.ru

Частичное перепрограммирование восстанавливает молодую экспрессию генов за счет временного подавления идентичности клеток

 Авторы: Antoine Roux, Chunlian Zhang, Jonathan Paw, José Zavala-Solorio, Twaritha Vijay, Ganesh Kolumam, Cynthia Kenyon, Jacob C. Kimmel     Аннотация   Сообщалось, что временная индукция...

Читать далее

Профилирование эпигенетического возраста в отдельных клетках

 Авторы: Александр Трапп, Чаба Керепеси, Вадим Николаевич Гладышев     Аннотация   Метилирование ДНК определенного набора динуклеотидов CpG стало критическим и точным биомаркером процесса старения. Многовариантные модели машинного обучения, известные как...

Читать далее

Эпигенетические часы показывают омоложение во время эмбриогенеза, с последующим старением

      Краткое содержание   Представление о том, что клетки зародышевой линии не стареют, возникло еще  с 19-го века от идей Августа Вейсманна. Однако...

Читать далее

Мультиомиксное омоложение клеток человека путем кратковременного перепрограммирования в фазе созревания

      Краткое содержание   Старение - это постепенное снижение физической формы организма, которое со временем приводит к дисфункции тканей и заболеваниям. На клеточном...

Читать далее

Универсальный возраст по метилированию ДНК в тканях млекопитающих (препринт)

Новые результаты       Старение часто воспринимается как дегенеративный процесс, вызванный случайным накоплением клеточных повреждений с течением времени. Несмотря на это, возраст можно...

Читать далее

Ограниченное омоложение старых гемопоэтических стволовых клеток в молодой нише костного мозга

      Гемопоэтические стволовые клетки (HSC) с возрастом обнаруживают функциональные изменения, такие как снижение регенеративной способности и миелоидно-зависимая дифференцировка. Ниша HSC, которая...

Читать далее

Разведение плазмы улучшает когнитивные функции и снижает нейровоспаление у старых мышей

      Наше недавнее исследование установило, что факторы молодой крови не являются причиной и не являются необходимостью для системного омоложения тканей млекопитающих...

Читать далее

Пора кончать со старой кровью - Джош Миттельдорф

      2020 год обещает нам, что мы сможем сделать наши тела молодыми без явного восстановления молекулярных повреждений, но лишь просто изменив...

Читать далее

Омоложение тканей трех зародышевых листков путем замены плазмы старой крови солевым раствором альбумина

     Аннотация   Гетерохронный обмен крови омолаживает старые ткани, и большинство исследований о том, как это работает, фокусируется на молодой плазме, ее фракциях...

Читать далее

Обращение возраста: измерение эпигенетического возраста двух разных видов с помощью одних часов

   Аннотация   Известно, что молодая плазма крови оказывает благотворное влияние на различные органы у мышей. Однако не было известно, омолаживает ли молодая...

Читать далее

Прорыв в омоложении

  Если вы избегаете громких заявлений и в течении длительного времени соблюдаете дисциплину недосказывания посреди яркого неонового мира, то возможно вы...

Читать далее

Трансплантация ACE2-мезенхимальных стволовых клеток улучшает результат лечения у пациентов с пневмонией, вызванной COVID-19

Озвучить текст роботом: 

    Краткое содержание   Коронавирус (HCoV-19) вызвал новую вспышку коронавирусной болезни (COVID-19) в Ухане, Китай. Профилактика и реверсия...

Читать далее

Диагностика старения на основе 9 признаков «Hallmarks of Aging»

  “Если вы не можете измерить это, вы не можете улучшить его”, — так сказал Уильям Томсон, великий ирландский физик известный...

Читать далее

Паттерны биомаркеров старения, смертности и вредных мутаций проливают свет на начинающееся старение и причины ранней смертности - Гладышев 2019

Основные моменты Смертность от возрастных заболеваний U-образная с надиром ниже репродуктивного возраста Количественные биомаркеры старения постоянно меняются на протяжении всей жизни Бремя мутаций...

Читать далее

Клеточное старение. Определение пути вперед

Клеточное старение - это состояние клетки, вовлеченное в различные физиологические процессы и широкий спектр возрастных заболеваний. В последнее время быстро растет...

Читать далее

Видео: Суть старения и путь к долголетию - Гладышев В.Н.

Лекторий МГУ: Вадим Николаевич Гладышев, 28 мая 2019 г. 17.00Тема лектория: «Суть старения и путь к долголетию». Профессор Факультета биоинженерии и...

Читать далее

Японцы получили разрешение скрестить эмбрион человека и животного

Ученые давно проводят эксперименты по выведению различных гибридных видов животных. Как правило, это относится к лабораторным животным, опыты над которыми...

Читать далее

Мыши смогли восстановить ампутированные пальцы при помощи двух белков

  Возможно, в будущем люди смогут восстанавливать потерянные конечности — на это, во всяком случае, намекают медицинские эксперименты. Ученым уже известно...

Читать далее

Израильские учёные разработали универсальное лечение против рака

    Небольшая группа израильских учёных считает, что они нашли первое универсальное лечение против рака.  «Мы считаем, что через год мы предложим универсальное...

Читать далее

Клинические испытания первой омолаживающей терапии

    Самое первое человеческое испытание сенолитических лекарств, было объявлено ещё в июне, и большая часть мира практически не обратила внимания на него...

Читать далее

Старение внеклеточного матрикса

    Данная статья собрана из нескольких моих ранних заметок о влиянии внеклеточного матрикса на процесс старения. Текст статьи будет обновляться — я планирую...

Читать далее

Обзор достижений в борьбе со старением в 2018 году

   Каким был 2018 год в борьбе со старением? Год начался с хорошей новости. Под давлением общественности, ученых, организаций и сторонников борьбы со...

Читать далее

Таблетка от старости и кровь младенцев: достижения науки о старении в 2018 году

    2018-й принес обнадеживающие результаты в борьбе со старением и стал годом взрывного роста бизнеса на бессмертии. Начались испытания сенолитика — препарата, убивающего стареющие клетки, ключевого...

Читать далее

Китайский ученый заявил о рождении первых в мире генетически модифицированных детей

  Китайский ученый Цзянькуй Хэ заявил о рождении первых в мире детей из генетически отредактированных эмбрионов. По словам ученого, родились близняшки, у которых он попытался создать устойчивость к заражению...

Читать далее

Новая веха в медицине: Создан первый в мире сканер для всего тела

    Исследователи и ученые из Калифорнийского университета в Дейвисе со своими китайскими коллегами из компании United Imaging Healthcare (UIH) создали аппарат...

Читать далее

Первая искусственная роговица, напечатанная на 3D-принтере, уже готова для трансплантации

    Роговица — это крайне важная, но очень хрупкая часть нашего органа зрения. Она очень легко подвержена травмам и различным заболеваниям...

Читать далее

Ученые создают лазерный кожный регенератор из «Стартрека»

     Технологии из научно-фантастической вселенной «Стартрек» продолжают проникать в нашу реальную жизнь. Мы уже читали о медицинском трикодере, слышали о разработках...

Читать далее

Ученые создали универсальные имплантаты, которые не будут отторгаться организмом

  Любые материалы (в том числе и биологические), которые не созданы нашим организмом, в любом случае являются чужеродными и будут отторгаться...

Читать далее

«Получи я миллиард долларов сегодня, мы победили бы старение на 10 лет раньше. Это 400 миллионов жизней»

      Обри де Грей: большое интервью   В Москву на конференцию «Future in the City», которая пройдет 18 и 19 июля в башне «Империя» в Москва-Сити...

Читать далее

Генетик из Гарварда создал стартап по омоложению собак

В дальнейшем ученый намерен распространить исследования на людей.     Генетик, молекулярный инженер и химик Джордж Черч из Гарварда основал стартап Rejuvenate Bio...

Читать далее

Как наука приближает бессмертие к реальности?

    Поиски Понсе де Леоном фонтана вечной молодости могут быть легендой, но основная идея — поиск лекарства от старости — вполне реальна. Люди...

Читать далее

Секрет вечной жизни точно скрывается в наших клетках

    Однажды могущественный шумерский король по имени Гильгамеш отправился на происки, как это часто делают персонажи мифов и легенд. Гильгамеш стал...

Читать далее

Геронтологи готовы к прорыву

Остановись, старенье!   Ведущие ученые из 17 стран приехали в Россию, чтобы решить проблему старения. Именно теперь, по их мнению, накоплен критический...

Читать далее

Моя улучшенная версия: как жить вечно

      Джордж Чёрч [George Church] возвышается над большинством людей. У него длинная серая борода волшебника Средиземья, а работа всей его жизни...

Читать далее

Клеточная терапия без клеток: омоложение внеклеточными везикулами

  Восстановление сердечной мышцы после месяца терапии внеклеточными везикулами. Иммунные метки: агглютинин (красный), тропонин (зеленый) и DAPI (голубой)   Исследователи Колумбийского университета, работающие...

Читать далее

Биологи впервые собрали мышиный «эмбрион» прямо из стволовых клеток

  Бластоциста состоит из внешнего слоя клеток, из которого развивается плацента, и внутреннего – будущего детёныша. Здесь и ниже иллюстрации Nicolas...

Читать далее

Способ борьбы со старением: обращение вспять процесса снижения концентрации НАД+

    Старение сопровождается развитием метаболических нарушений и дряхлением. Недавние исследования продемонстрировали, что снижение уровня никотинамидадениндинуклеотида (НАД+) – ключевой фактор замедления обменных процессов, связанного...

Читать далее

Лекарства от старения, и Где они обитают

Время напрямую людей не убивает, старение – это биологический процесс. Есть группа заболеваний, которые называют возраст-ассоциированными, или старческими. Основным фактором риска...

Читать далее

Создан микроскоп, позволяющий наблюдать за движением клеток внутри организма

Ученые из Медицинского института Говарда Хьюза усовершенствовали метод флюоресцентной микроскопии таким образом, что теперь с ее помощью можно снимать в...

Читать далее

Ученые имплантировали маленький человеческий мозг мыши

Имплантация органов и тканей – вещь в науке далеко не новая. Не первый день существуют и так называемые кортикальные наборы...

Читать далее

В человеческих клетках впервые обнаружена новая форма ДНК

Ученые из австралийского Института медицинских исследований Гарвана сообщили об открытии в клетках человеческого организма необычных структур ДНК – i-мотивов (intercalated-motif...

Читать далее

Нанонож лишнего не отрежет: хирурги тестируют точечную терапию рака

Самое распространенное среди мужчин онкологическое заболевание, рак простаты, которым страдает примерно четверть пациентов урологических стационаров, до недавнего времени лечили хирургически — удаляли...

Читать далее

В США впервые в мире провели комплексную пересадку пениса и мошонки

Врачам из больницы Джона Хопкинса (штат Мэриленд) удалось провести успешную комплексную трансплантацию пениса и мошонки. Операция длилась 14 часов, в...

Читать далее

Антиоксидант MitoQ омолаживает сосуды

Результаты, полученные исследователями университета Колорадо в Боулдере, работающими под руководством профессора Дага Силса (Doug Seals), еще раз подтвердили, что применение...

Читать далее

Эпидемия молодости: как прожить 120 лет и стать счастливым

    Около 5% нынешних молодых и богатых проживут 120 лет и дольше, считают биохакеры. Читайте, что для этого нужно делать. Осенью 2017...

Читать далее

Имплантация пигментного слоя сетчатки помогла сохранить зрение

    Борьба с заболеваниями, которые в той или иной степени угрожают жизни человека – одно из самых приоритетных направлений современной медицины...

Читать далее

В США протестировали мозговой имплантат для улучшения памяти

    Американские исследователи провели проверку имплантата-электростимулятора, призванного усилить память. В среднем способность к запоминанию слов удалось улучшить на 15%. Если технология пройдет...

Читать далее

Ученым впервые удалось воссоздать легочную ткань

    Лечение стволовыми клетками находит все большее применение в медицинской практике. Так, например, группа китайских ученых из Университета Тунцзи не так...

Читать далее

Ученые МИЭТа планируют начать серийное производство аппарата вспомогательного кровообращения для детей уже в этом году

    В 2012 году благодаря ученым нашего университета была осуществлена первая в России успешная операция по имплантации «искусственного сердца» человеку. К...

Читать далее

Первый шаг к тканеинженерным надпочечникам

    Исследователи лондонского университета королевы Марии, работающие под руководством доктора Леонардо Гуасти (Leonardo Guasti), использовали репрограммированные клетки для создания первого прототипа...

Читать далее
Image

Оцифровка пользователя, Моделирование, 3D-визуализация.

Создание подробной цифровой копии на основе данных из медкарты.

Анализ данных. Исправление показателей организма.

Image

Взаимодействие цифровых профилей с целью улучшения показателей.

Обмен знаниями, проведение общих исследований.

Загрузка личного аватара в 3D мир. Игрификация, соревнования.

Image

В разработке

  • Официальная страница о медицинских чат-ботах на сайте Сверхчеловечество.рф
  • Подробности разработки чат-бота для проекта "Карта управления возрастом" (для партнеров и разработчиков) здесь:
Image

Обзор мировых разработок по хранению данных в разработке

Хранилище данных для Электронной Медицинской Карты Управления Возрастом в разработке

Материалы по теме:

Image

Основное взаимодействие планируется производить посредством Социальной сети:

Также существует множество специализированных телемедицинских сервисов:

Image

Данный раздел находится в разработке и будет доступен после запуска Электронной медицинской Карты Управления Возрастом:

Image

Основной материал сайта по теме искусственного интеллекта в медицине здесь:

На основе данной статьи будет определяться разработчик искусственного интеллекта для данной системы управления возрастом.

Image

ВАШ ЛИЧНЫЙ ВКЛАД В БОРЬБУ СО СТАРЕНИЕМ

Скооперируйтесь с тысячами других участников и создайте любой проект в области антистарения, проведите научные исспедования

Площадка для создания и финансирования проектов. Официальная страница сайта Сверхчеловечество.рф для сбора средств на ускорение прогресса в области омоложения:

Image
Image

Основная страница сайта Сверхчеловечество.рф о создании и участии в клинических испытаниях терапий антистарения и отката возраста организма здесь: