Вице-президент фонда "Сколково": клонирование человека — вопрос этики, а не технологии

 

Сколково Биомед

 

В кластере биомедицинских технологий "Сколково" 430 проектов. Часть из них находится на стыке информационных технологий и медицины. О том, заменит ли в будущем врача компьютер, может ли редактирование человеческих генов создать совершенное существо и что мешает клонированию человека, рассказал в интервью ТАСС вице-президент фонда "Сколково", исполнительный директор кластера биомедицинских технологий Кирилл Каем.

 

— Кирилл Владимирович, в "Сколково" вы курируете вопросы медицины.  Насколько здесь востребованы цифровые технологии?

— На текущий момент в кластере биологических и медицинских технологий 430 проектов, из которых добрая половина имеет отношение к фармацевтическим разработкам. И не менее чем в 20% проектов, которые относятся к медицинским приборам и диагностике, используются цифровые технологии. "Цифра" сейчас везде. Применение достаточно хороших вычислительных мощностей позволяет быстрее, точнее и эффективнее поставить диагноз, назначить более правильное лечение. Технологии, которые приходят сегодня в практическую и клиническую медицину, являются хорошими помощниками врача.

 

— А кто же в итоге ставит диагноз? Компьютер или человек?

— Решение все равно принимает врач. Мы еще долгое время не будем полагаться на поставленный роботом диагноз и лечение, назначенное им. Но с учетом сложности современных биологии и медицины врач при принятии правильного решения должен анализировать такое большое количество факторов, что человеческий мозг просто не в состоянии моментально все это охватить. Хорошим примером является трансляционная медицина (область науки, которая позволяет переносить теоретические аспекты биомедицинских исследований и знания из области физики, математики и других дисциплин в практическую медицину — прим. ТАСС), связанная с генетикой. Ученые расшифровали геном человека около 10 лет назад. Сейчас мы все лучше и лучше понимаем, за что каждый участок генома отвечает. Есть гены, которые влияют на экспрессию (процесс преобразования наследственной информации в РНК или белок) и на функционирование клеток, из которых мы состоим.

Чтобы описать процесс передачи информации от генов рибонуклеиновой кислоте (РНК) или белку, ученым требуется много-много страниц текста. Вот тогда на помощь и приходят компьютеры, поскольку врач, конечно же, не в состоянии проанализировать все эти данные. Ему нужны вычислительные мощности, та самая цифровая медицина, чтобы получить четкие рекомендации.

Где эта цифровая медицина может быть полезна? В диагностике заболеваний, потому что нужно совершенно четко понимать, какой сбой произошел. Это касается не только, например, генетических заболеваний, но и онкологических, поскольку они зачастую связаны именно со сбоями в генетическом коде.

 

— То есть машина использует все наработанные наукой знания и опыт, в том числе информацию по геному, для точной диагностики?

— Да, совершенно верно. Она анализирует весь массив данных, закодированных в геноме, для понимания влияния их на метаболизм человеческой клетки. Но и не только. Анализируются и симптомы, которые появляются у различных пациентов, признаки заболевания и возникающие во время течения болезни отклонения. Используя эти гигантские данные, можно более точно поставить диагноз и сделать это не постфактум, когда уже появилось заболевание, а предугадать его течение. Врач тогда может дать пациенту, а иногда даже будущему пациенту, пока еще здоровому человеку, необходимые рекомендации или назначит корректирующее лечение, которое позволит избежать серьезных последствий в будущем.

 

— Врач сможет предсказывать заболевания?

— Предсказательная или предиктивная медицина — это то, на что мы рассчитываем при развитии клинической медицины с внедрением машинного анализа "больших данных. И в будущем мы изменим понимание того, что такое здоровье. Ведь на сегодня здоровый человек — это тот человек, у которого нет заболевания в текущий момент.

 

В будущем медицина, вероятно, будет считать здоровым человеком индивидуума, у которого, согласно предиктивному, подходу заболевание не разовьется в ближайшем будущем. Система здравоохранения будет нести значимые расходы на пациента еще до возникновения заболевания. Де-факто мы, к сожалению, все с вами потенциально больные люди…

 

— Есть грустная шутка: наше здоровье — это не диагностированные у нас болезни.

— Есть еще более жесткая шутка у онкологов, которые говорят, что не всякий пациент доживает до своего рака. Так или иначе, объем накопленных генетических ошибок с возрастом увеличивается. И если понимать, основываясь на предрасположенности человека, какие ошибки будут накапливаться в первую очередь, можно реально влиять как на образ жизни, так и на корректирующую терапию. Но это касается не только диагностики и предсказательной диагностики.

Работа с данными пациентов, у которых заболевание уже развилось, позволяет назначать значительно более точную и эффективную терапию с меньшим объемом побочных эффектов. Ведь развитие лекарственных средств сейчас идет по принципу — сложное слово — орфанизации.

 

— Не могли бы вы пояснить?

— Орфанизация — это сужение популяции пациентов, на которых направлено конкретное лекарственное средство.

Говоря простыми словами, буквально 40–50 лет назад мы просто людей лечили от рака. Потом, с развитием науки, мы начали лечить людей от специфических раков — от рака легкого или от рака груди. Потом, с дальнейшим развитием науки, произошло еще большее расщепление — мы начали выделять группы пациентов с определенным типом рака легкого или рака груди. И лекарственные препараты разрабатываются для все меньших и меньших популяций пациентов — для конкретного генетического сбоя или для конкретной биологической мишени, которая вызывает это заболевание.

 

Чем точнее мы определим механизм возникновения заболевания, тем более эффективные лекарственные средства мы можем использовать. Сейчас врач назначает рекомендованную линию терапии, применение определенных лекарственных средств. При улучшении ситуации — все замечательно, мы попали, у пациента есть положительная динамика. Но если лекарство не срабатывает, назначается терапия второго ряда — пробуют другие препараты. Иногда — терапия третьего ряда. Есть, например, заболевание — triple-negative breast cancer — тройной негативный рак груди, когда на три линии терапии у пациента нет хорошей динамики. Потому что это очень узкое ответвление причин, по которым возникло онкологическое заболевание, для него на текущий момент нет специфических препаратов. При этом каждая линия терапии имеет свои побочные эффекты, негативно влияющие на здоровье.

 

— Таким образом, не совсем точно подобранное средство может навредить?

— Верно. Здоровье пациента страдает, потому что онкологические препараты все-таки токсичны. Что помогает сделать цифровая медицина? Можно, имея большой массив данных пациентов со схожими заболеваниями, включающий в себя генетическую и клиническую информацию, заставить компьютер сделать рейтинг лекарств, которые конкретному пациенту, на основании комбинации его клинических и генетических данных, смогут помочь.

Это позволяет не перебирать несколько линий терапии, а сразу назначить препарат, который с наиболее высокой долей вероятности при минимальных побочных эффектах будет эффективен. Это то, что называется персонализированной медициной. Я привожу в пример онкологию, но, конечно, это значительно более широкое понятие. Просто онкология — очень болезненная проблема в связи с высокой токсичностью препаратов. Благодаря уже существующим технологиям, которые сейчас находятся на границе между наукой и клинической медициной, мы уже реализуем индивидуальный подход к пациенту.

Однако тут есть и проблема. Используемые врачами данные вычисляются на оборудовании, принципиальное назначение которого — научное. И оно зарегистрировано в Российской Федерации, прежде всего, как научное оборудование.

 

— Иными словами, экспериментальное?

— Мы говорим как раз о машинах, о роботах, которые позволяют читать последовательность ДНК, читать геном. Но они сделаны для лабораторий в первую очередь. А здесь де-факто оказывается медицинская услуга. У нас, и это совершенно справедливо, есть Росздравнадзор, который за этим следит. То, что мы используем для клинической практики, должно быть зарегистрировано как оборудование для медицинской услуги.

Эта проблема существует во всем мире. Но страны, где экспериментальная медицина развивалась быстрее, уже предложили механизм, который называется Laboratory Developed Test (LDT) — это сертификация лабораторий, использующих медицинские тесты, разработанные для научно-клинических исследований. На такие лаборатории получается специальное разрешение — в Соединенных Штатах, например, такая сертификация называется CLIA (Clinical Laboratory Improvement Amendments).

 

— И что именно эта мера позволяет сделать?

— Она позволяет регулятору проанализировать весь процесс проведения лабораторной диагностики, разработанных специфических регламентов, в том числе с использованием научных приборов, и для данной конкретной лаборатории подтвердить, что "да, мы разрешаем вам использовать такое устройство". Оно пока еще не сертифицировано как лабораторно-диагностическое медицинское оборудование, но дает врачу возможность легально поставить диагноз.

 

Для того чтобы изменить ситуацию в России, мы создали рабочую группу, в которую вошли представители Росздравнадзора, а также нескольких компаний, сколковских резидентов и партнеров, которые занимаются как раз разработками на границе между наукой и практической медициной, в том числе генетической диагностикой.

Мы обсуждаем возможность выдачи таких разрешений на территории "Сколково", чтобы наши резиденты могли помогать пациентам. Очень приятно, что регулятор понимает необходимость этого. Коллеги в Росздравнадзоре мыслят прогрессивно и осознают, какая будет большая помощь для пациентов, сколько человеческих жизней будет спасено.

Считаю, что ввод правил по выдаче разрешений по аналогии с LDT позволит в несколько раз увеличить число стартап-проектов, которые занимаются подобного рода разработками. Кратно вырастет и число пациентов, получающих такую помощь, а это несколько тысяч человек в год. Только наши резиденты помогают 2–3 тысячам больных. Мы хотим увеличить эту цифру до десятков тысяч в России.

 

— Речь идет не о создании нового оборудования, а о разработке систем анализа данных?

— Да, о регламентах и о системах анализа данных в основном. На текущий момент есть несколько крупных производителей оборудования. Оно, в первую очередь, поставляется для научных лабораторий. То, чем занимаются наши разработчики, это как раз вопросы использования нейросетей, искусственного интеллекта (ИИ).

В конечном счете это позволит анализировать "большие данные".  Врач тем временем будет просто нажимать на так называемую "большую зеленую кнопку", и система в конечном итоге даст ему рекомендации по подбору лекарственного препарата или по диагностике без погружения в сложные взаимосвязи сигнальных путей, которые влияют на развитие заболевания или выбор эффективного приоритетного лекарственного средства.

 

— То есть в перспективе, при развитии этих систем, работа врача будет сводиться только к тому, чтобы выслушать пациента, правильно ввести его показатели и…

— Нет, не совсем так. Это только один из факторов. То есть, конечно, такие системы предназначены для того, чтобы помочь врачу принять решение на основе того массива данных, который человеческий мозг не в состоянии обработать.

Я назову сейчас странные для уха неспециалиста термины — геномика, протеомика, транскриптомика, метаболомика. Это названия отраслей знания, описывающих ступени, которые клетка проходит для того, чтобы развиваться, вырабатывать определенный белок, делиться. Искусственный интеллект определяет критические точки на каждом из этапов, которые могут усилить, ослабить, убить клетку или заставить ее "сойти с ума" и превратиться в опухоль. К сожалению, без компьютерной помощи на анализ такой информации уходили бы недели.

 

— Соответственно, это ведет нас к тому, что нужно будет нарабатывать некую базу данных всех пациентов?

— Такого рода базы данных нарабатываются постоянно, но на текущий момент они разрозненны. К части открыт доступ, к части — нет. Есть и российские, и международные базы данных, но многие из них разбросаны по достаточно небольшим группам исследователей-биоинформатиков.

 

— В России такая система создается?

— В России на текущий момент это находится во фрагментированном состоянии. В некоторых странах были приняты так называемые проекты "Национальный геном". Соединенные Штаты и Великобритания сделали это в виде правительственных программ. Массив данных собирается воедино, и государство предоставляет доступ к этим базам данных группам исследователей для развития интеллектуальных систем на их основе.

У нас же такой единой национальной программы пока нет. Хотя она была бы чрезвычайно полезна, потому что увеличила бы количество людей, которые занимаются данными разработками, а сами разработки стали бы более эффективны.

Чем больше база данных, тем меньше искусственный интеллект делает ошибок. В связи с этим мы в рамках рабочей группы внесли предложение, которое вошло в правительственную программу по цифровой экономике. Суть его в том, чтобы по определенному графику постепенно начать генотипирование населения. Началом станет сбор генетической базы новорожденных с последующим отслеживанием происходящих изменений в состоянии здоровья. Это поможет нам все лучше и лучше понимать, как те или иные отклонения в генотипе влияют на будущее состояние здоровья.

 

Вице-президент, исполнительный директор кластера биомедицинских технологий фонда "Сколково" Кирилл КаемВице-президент, исполнительный директор кластера биомедицинских технологий фонда "Сколково" Кирилл Каем

 

— На какой стадии этот вопрос находится в России?

— Он вошел в программу по цифровой экономике. Там прописаны определенные ключевые моменты, когда начнется работа. Нам очень не хватает единого центра — проектного офиса, который бы координировал ведение этой базы данных, упорядочивал ее по единым стандартам и позволял бы интегрировать в базу уже существующие массивы информации из разных источников. Плюс он бы обеспечивал равные права всем разработчикам и отвечал за деперсонализацию информации, скрывая личность конкретного пациента. Ведь разработчику не столь важно, как зовут человека, ему важно, чтобы совпадали все атрибуты.

В то же время, если врач хочет получить сведения по конкретному пациенту, нужно будет обратно прикрепить его персональные данные. За эту персонализацию и деперсонализацию также должен отвечать проектный офис. Министр здравоохранения РФ Вероника Скворцова на ВЭФ сказала, что это можно сделать с использованием технологии блокчейн (непрерывная последовательная цепочка блоков, содержащих информацию — прим. ТАСС), потому что речь идет о безопасности данных пациентов. И вот такого рода проектный офис во многом бы ускорил работу, потому что стал бы центром, вокруг которого биоинформатики могли бы строить свои проекты, и согласовал бы стандарты между ними.

Подобные ассоциации существуют на уровне каждой из стран. Есть Международная ассоциация по работе с генетическими данными — "Сколково" там представлено как один из участников. И, наверное, это сейчас единственный участник из России.

"Сколково" могло бы стать хорошей базой для такого проектного офиса, но, честно говоря, я буду счастлив вне зависимости от того, где он появится, потому что для меня важно дать возможность разработчикам-биониформатикам получить доступ к этим данным, чтобы они начали вырабатывать новые интеллектуальные алгоритмы.

 

— Правовая система нам позволяет это сделать?

— В принципе, да. В законе о персональных данных мы видим механизмы, которые позволяют их персонализировать и деперсонализировать. Плюс не требуется серьезных финансовых вложений, поскольку количество секвенаторов в Российской Федерации в различных научных учреждениях при правильной их координации будет достаточным.

Секвенатор, если сильно упрощать — это машина, которая как раз считывает данные генома, после чего их можно поместить в общую базу данных. Какие-то крупные вливания в покупку тяжелого оборудования не нужны — можно собрать то, что есть. Могут потребоваться средства для координации этого процесса, для получения биообразцов у населения, для ведения базы данных и приобретения реактивов. Но это не столь большие деньги для первой волны.

Я думаю, что предложенная нами инициатива будет принята, и уже в следующем году мы начнем действовать либо в качестве координатора, либо через резидентов, которые станут пополнять эту базу и работать с данными.

 

— Что вы имеете в виду, говоря о координации? В "Сколково" будет находиться некий суперкомпьютер, который будет управлять процессом?

— Компьютер сейчас может находиться где угодно. Здесь скорее речь идет о координации с точки зрения проектного офиса — выработке единых стандартов и интерфейсов, работе с персонализацией и деперсонализацией, обеспечении прав доступа к этой базе данных.

 

— Будут ли использоваться технологии искусственного интеллекта?

— Здесь уже используются элементы искусственного интеллекта. Но он, кроме работы с данными генома, может использоваться еще для работы с медицинскими изображениями. И это тоже серьезная и большая диагностическая поддержка для врача. Мы уже имеем достаточно большую материальную базу отсканированных медицинских изображений — таких, как магнитно-резонансная (МРТ) или компьютерная (КТ) томография, у нас есть замечательные врачи-радиодиагносты. Но количество этих экспертных центров ограничено, и зачастую в отдаленных регионах, где не хватает квалифицированного персонала, врачи могут делать ошибки, пропускать тревожные сигналы в медицинских изображениях, которые говорят о том или ином заболевании.

С другой стороны, российские разработчики, которые работают с искусственным интеллектом в области распознавания изображения, уже достаточно далеко в этом продвинулись. К примеру, сколковские стартапы занимают первые места в соревнованиях, которые проводят Google и международные независимые организации.

Если мы сложим вместе эти две компетенции, мы действительно серьезно повлияем на пропущенные диагнозы по туберкулезу или онкологии. Такого рода разработки есть, они активно ведутся, но мы можем успеть стать законодателями моды в этом тренде.

 

— Кто именно из врачей сейчас анализирует медицинские изображения?

— Их две группы. Первые работают с радиологией (рентген, КТ, МРТ), вторые — это так называемые морфологи-патологи, то есть врачи, которые смотрят срезы опухолей и уточняют диагноз. На текущий момент в здравоохранении этот метод является "золотым стандартом". Именно эти специалисты ставят окончательный диагноз — определяют доброкачественный или злокачественный тип опухоли, специфику клеток, которые в этой опухоли являются преимущественными или вызывают опасение.

Количество таких высококвалифицированных врачей ограничено во всем мире. Сколковские резиденты сейчас много работают в части создания для них образовательных программ, создают систему, которая позволяет проводить консилиумы этих врачей, обсуждать наиболее сложные случаи в режиме онлайн.

И здесь искусственный интеллект тоже может очень сильно помочь. Изображения с указанием атипичных клеток вводятся в компьютер, нейросеть их анализирует и учится в будущем сама определять подобного рода атипичные клетки, чтобы давать советы врачу. Это серьезно уменьшит объем врачебных ошибок и повысит точность диагнозов.

 

— Есть ли примеры таких компаний в "Сколково"?

— Есть. Это компания, которая называется "ЮНИМ", она у нас сейчас открывает лабораторию. Они собрали лучших морфологов и сделали базу данных, состоящую из изображений высокого разрешения, полученных с цифровых микроскопов.

Сейчас идет обучение искусственного интеллекта работе с этими изображениями. Оно проводится, увы, руками самих врачей, которые загружают изображение, а затем проверяют, правильно ли сетка начала их определять. Поэтому на это уходит так много времени.

 

— То есть мы говорим о том, что рано или поздно врач может просто сказать: "Siri, что значит это изображение?"

— Скорее: "Где здесь атипичные клетки?" И Siri на снимке подскажет: "Да, вот атипичные клетки — здесь и здесь, обращаю ваше внимание, проверьте". И врач будет действовать.

 

— Так кто в этом случае ставит диагноз?

— Все равно врач принимает решение, он может конкретно посмотреть выделенные зоны и проверить, не ошибся ли искусственный интеллект, и написать: "Да, отлично. Согласен с этим". Или написать: "Не согласен", — и найти что-то еще.

Но если он укажет на ошибку, в следующий раз искусственный интеллект будет определять такие клетки точнее. Как я уже говорил, у нас есть хорошие позиции в области распознавания изображений. Некоторые иностранные клиники уже используют разработку наших ребят.

 

— То есть эти наработки можно использовать и в удаленной медицине?

— Они уже в ней используются. Например, лаборатория может находиться во Владивостоке. Если у них есть качественный микроскоп и сканер, изображение сканируется, а потом в специальном формате передается в сеть. Там уже морфологи в Америке, Германии и России могут посмотреть вместе какой-либо сложный случай и сказать: "Да, мы согласны. Да, диагноз вот именно такой. Надо лечить так-то". Это уже сейчас работает как дистанционная медицина. Коллеги из "ЮНИМ" еще хотят добавить интеллектуальную подсказку от компьютера.

 

— Но решающее слово все-таки остается за врачом. То есть машина не выносит диагноз, только предполагает?

— Решающее слово еще долго будет оставаться за врачом. Потому что машина может дать подсказку, но ответственность несет тот человек, который назначил лечение

.

— Если можно, назовите компании-герои, которые этим всем занимаются?

— О компании "ЮНИМ" я уже сказал. Эта компания — резидент "Сколково". Есть примеры и из другой сферы — подбора терапии для пациентов с онкологией на основе аналитики генома с пониманием, каким образом развивалось заболевание. Здесь работает компания "ПОНКЦ" (Первый онкологический научно-консультационный центр), которая уже помогла назначить правильное лечение нескольким тысячам пациентов.

Представители компании ведут совместную работу с IBM Watson (суперкомпьютер фирмы IBM, оснащенный искусственным интеллектом) по тестированию их алгоритмов. Алгоритм анализирует истории болезни и генотип больного для назначения лечения.

 

— Вы говорили о том, что создана рабочая группа по LDT. Есть ли какие-то прогнозы, оценки или сроки?

— Мы очень бы хотели в 2018 году уже начать работу и вывести лаборатории из серой зоны в белую, чтобы врачи всей страны могли бы к ним обращаться, использовать их данные официально. Но это требует законодательных изменений. Вопрос в том, как быстро мы сможем это сделать.

В том числе потребуется, например, внесение определенных изменений в закон "Об инновационном центре "Сколково". Для решения этой проблемы мы сейчас консультируемся с нашими юристами.

 

— Росздравнадзор идет на компромисс?

— Росздравнадзор как раз понимает, что такие риски будут снижены, поскольку появляется единый проектный офис, который будет проще контролировать. В ведомстве хотят, чтобы это в первую очередь было создано на одной площадке, а потом уже распространилось оттуда на территорию всей страны.

 

— Наверное, эта проблема универсальная для ряда стран. Каковы мировые тенденции?

— "Сколково", как и все центры, поддерживающие разработки, находится на передовой, а регуляторы чуть-чуть отстают. Но в некоторых странах процесс внедрения движется быстрее и, что интересно, сейчас полюс прогрессивных государств перемещается с Запада на Восток.

Если 10–15 лет назад мы говорили о том, что Соединенные Штаты были впереди, они разрешили использовать методы значительно раньше, чем во всем мире, то сейчас китайские коллеги начинают их опережать. Сегодня китайское правительство берет на себя достаточно высокие риски, разрешая некоторые проекты, которые раньше нигде не были разрешены.

Например, есть методы, позволяющие скорректировать геном эмбриона таким образом, чтобы устранить причину врожденного заболевания, и это изменение можно даже передавать по наследству. Китай стал первой страной, которая разрешила, пока в научных целях, работать с человеческими эмбрионами. То есть де-факто они перешагнули через эту этическую проблему.

Другим примером является так называемый проект "Дитя трех родителей". Его автор Шухрат Миталипов — выходец из постсоветского пространства, сейчас работает в Англии и в США. Он занимается так называемой митохондриальной недостаточностью — это когда не совсем нормально работает клетка. Миталипов смог объединить ядро клетки с чужой оболочкой. Другими словами, взял ядро оплодотворенной яйцеклетки, где содержится генетический материал двух родителей, и поместил в другую яйцеклетку…

 

— Чтобы генетический материал скопировался?

— Чтобы сохранить генетический материал родителей и при этом убрать проблему, связанную с клеточным метаболизмом. Плод развивается из материала трех родителей. Удачные испытания уже прошли на человекообразных обезьянах.

 

— "Сколково" такие темы как-то затрагивает?

— Мы не можем действовать по проектам, которые не разрешены у нас в стране, поэтому — нет.

 

— Но изучение опыта ведется?

— Конечно. Мы об этом и говорим. Мы даже обсуждали возможность пригласить в "Сколково" Шухрата Миталипова. Но у Минздрава очень осторожное к этому отношение, что объяснимо.

 

— Вы имеете ввиду этические вопросы?

— В том числе этические проблемы. Например, появились новые методы редактирования генома CRISPR/Cas9 (КРИСПР/Кас9, метод манипуляции с геномом, потенциально может использоваться для лечения наследственных заболеваний человека — прим. ТАСС). Раньше ученые для корректирования генома брали вирусный вектор (то есть кусочек вируса). На этом вирусном векторе полезный участок генома они вводили в искомый геном. Вот ГМО (генетически модифицированные организмы) по большей части в мире сделаны на вирусном векторе. Но этот участок вирусного вектора все равно оставался чужеродным. КРИСПР/Кас9 позволяет быстрее разрезать ДНК и вставлять в нее нужный участок с меньшими негативными последствиями.

Этот метод, к слову, уже подтвержден на крупных животных. Использовать его уже сейчас можно технологически, на научном уровне проведено множество удачных экспериментов. В клинике метод может оказаться только после серьезной валидации, проверок безопасности, и это будет, возможно, только лет через десять.

Однако есть и этические проблемы. Потенциально метод можно применять для улучшения породы человеческой путем встраивания полезных признаков.

 

— Мы говорим об эмбрионах. Соответственно, это корректирование генетического материала еще не родившегося человека?

— Да, это имеется в виду. Этический вопрос в том, можно делать совершенного человека этими методами или нельзя? Ответ на него очень сложен.

Вот посмотрите на механизмы клонирования — они в сельском хозяйстве применяются направо и налево. Сейчас гигантский тренд на клонирование домашних животных. К примеру, в США многие владельцы кошек и собак после их смерти сдают генетический материал, чтобы им сделали такого же любимца, один в один. Серьезно. Это огромный рынок.

Мы были в Сан-Диего на BIO — это крупнейшая в мире выставка в сфере биотехнологий, и там был ряд компаний, которые этим вопросом занимаются. Клонирование собачек и кошечек, конечно, немного курьезно, но вы посмотрите на это под другим углом.

Например, производство племенных животных для сельского хозяйства, которые стоят сотни тысяч долларов. Сейчас это тоже уже делается, хотя с точки зрения биологии — это сложный организм, не менее сложный, чем человек. Кстати, вопрос клонирования человека — в первую очередь этический. Технологически это уже можно сделать.

 

— Это у нас уже сюжет фильма ужасов какой-то, на самом деле.

— Да, иногда я сам боюсь того, что вижу.

 

— Можно назвать вас оптимистом в этом отношении?

— Можно. Этические темы — это очень сложный вопрос. Например, нужен еще один Эйнштейн или нет? Правильно ли так поступать? Но это совершенно другой разговор.

 

Источник: tass.ru Беседовал Роман Баландин

Наномедицина: роботы внутри нас

 

 Наномедицина

 

Валерий Спиридонов, первый кандидат на пересадку головы, рассказывает о том, как наномашины помогут человеку стать сильнее, здоровее и приобрести новые способности.

— В середине 1990-х годов среди школьников был популярен фантастический мультфильм "Волшебный школьный автобус". Часть его серий была посвящена уменьшению автобуса с пассажирами до наноуровня и его проникновению в организм человека для борьбы с вирусами и бактериями "лицом к лицу".

Тогда это казалось мне всего лишь интересной выдумкой. Но спустя пару десятилетий мир настолько изменился, что лечение болезней на уровне молекул уже воспринимается как настоящая и завтрашняя реальность.

 

Открытие наномира

Фундаментом для формирования наномедицины послужили молекулярная химия и физика. Первые упоминания об исследованиях на уровне атомов встречаются в работах Исаака Ньютона. Еще в 1704 году Ньютон выражает надежду в своей книге Opticks, что микроскопы будущего помогут исследовать "тайны корпускул". Микроскопы же того времени еще не позволяли изучать образцы материи на наноуровне. 

 

МикроскопМикроскоп

 

Само понятие наномедицины сформулировал Роберт Фрайтас, аналитик института IMM и признанный специалист с мировым именем в этой области. По его словам, "наномедицина — это слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне с использованием искусственных наночастиц и наноустройств".

Пока наномедицина является лишь экспериментальной областью науки, но уже сегодня начинают появляться первые образцы лекарств и терапий, которые врачи применяют для лечения реальных болезней.

 

Врачи-нанороботы

Взамен традиционных таблеток и инъекций приходят крошечные роботы, сопоставимые по размерам с молекулами. Когда такие машины попадают в организм, они проводят диагностику, находят причину развития болезни и отправляются к тому органу, который нуждается в помощи и очередной порции лекарства.

Существует несколько разновидностей таких машин — часть из них убивает раковые клетки и бактерии, другие занимаются анализами и следят за состоянием организма, а третьи — проводят настоящие хирургические операции на молекулярном уровне.

 

Нанороботы и клетки кровиНанороботы и клетки крови

 

Создание таких медицинских роботов оказалось крайне сложной задачей — ученым пришлось понять, как можно научить их ориентироваться в пространстве, как обеспечить энергией и как заставить двигаться по прямой линии.

К примеру, движением таких роботов сегодня ученые управляют при помощи ультразвука, магнитных и электрических полей, тепла и более экзотических форм электромагнитных и иных волн.

Их батарейкой сегодня могут служить как молекулы сахаров и других веществ внутри тела человека, так и различные внешние источники энергии, такие как "жало" электронного микроскопа или излучатели различных диагностических устройств. Их двигателем могут выступать различные органические и неорганические наночастицы, меняющие свою форму и положение при приложении магнитных полей или при взаимодействии с разными молекулами.

Такие роботы в будущем смогут решать самые разные задачи, начиная с удаления тромбов и холестериновых бляшек и заканчивая "сшиванием" сосудов и остановкой кровотечений.

 

Робот-хирург

Необходимость разработки роботов-хирургов продиктована прежде всего дефицитом квалифицированных специалистов. Мини-хирург Smart Tissue (STAR), созданный в 2016 году группой ученых из университета Джона Хопкинса (США), провел ряд успешных операций на живых свиньях по сшиванию участков тонкого кишечника.

STAR вводится пациенту через рот и проводит операции без единого разреза на коже. Он получает данные от системы флуоресценции, печати изображений в 3D и датчика давления. План же самой операции программируется через компьютер.

 

Врач наблюдает через монитор за ходом операцииВрач наблюдает через монитор за ходом операции

 

ДНК-нанороботы

Помимо починки отдельных клеток, сосудов и тканей, нанороботы смогут и устранять генетические нарушения, напрямую редактируя структуру нитей ДНК.

Пока такие машины только разрабатываются, и ученым из Калифорнийского технологического института недавно удалось создать наноробота, способного распознавать отдельные нити ДНК и использовать их в качестве ориентиров при сортировке микроскопических грузов. В будущем подобные машины смогут распознавать поврежденные участки генов и заменять их на "правильные" последовательности генетических букв-нуклеотидов.

 

Генетически модифицированные молекулы ДНКГенетически модифицированные молекулы ДНК

 

Кроме того, химики из Манчестерского университета разработали первого в мире молекулярного робота, способного собирать другие молекулы. Он состоит из 150 атомов углерода, водорода, кислорода и азота, и его более продвинутые версии могут в будущем послужить основой для целых молекулярных фабрик и сборочных линий.

 

Регенерация тканей

В будущем такие роботы смогут не только "чинить" организм, но и защищать его от повреждений. Недавно ученым из Гарварда удалось создать наноткань, способную восстанавливать свою структуру после серьезных повреждений.

Кроме того, нанотехнологии могут дать человеку способность регенерировать свои собственные клетки и ткани.

 

Наноробот на клетке организмаНаноробот на клетке организма

 

Недавно ученые из университета Огайо создали наномашину, способную доставлять в клетки специальный набор генов и белков, который "перепрограммирует" их и заставляет превратиться в стволовые клетки, способные делиться, залечивать раны и восстанавливать поврежденные органы и ткани.

 

Диагностика

Другое важное направление — использование наночипов в диагностике заболеваний. Наноимпланты, недавно созданные учеными, могут собирать сведения о состоянии здоровья пациента и отправлять данные на компьютер, находясь внутри его тела. К примеру, наночип, находящийся в мозге, может анализировать уровень его активности и предпринимать меры при наступлении эпилепсии.

Кроме того, подобные чипы смогут проникать внутрь плода в утробе матери и проводить сверхраннюю диагностику различных наследственных болезней, которая поможет родителям понять, как можно спасти жизнь ребенка или избавить его от проблем в тот момент времени, когда такое вмешательство еще возможно.

 

Управление через смартфон

Пока такими роботами можно управлять, находясь в специализированных лабораториях и клиниках. В будущем инженеры создадут более удобные системы контроля, которые позволят всем людям "дирижировать" работой таких наноботов, используя смартфон или другой гаджет. Пациент сможет получать отчеты о своем состоянии, вносить изменения в работу наномашин и отслеживать статистику по эффективности лечения.

Безграничный и удивительный наномир открывает свои тайны благодаря новейшим достижениям науки. Предвкушая грандиозные возможности для человечества, ученые приближают наступление новой эпохи наномедицины.

Наномедицина позволит добиться максимального качества медицинской помощи с моментальным реагированием на проблемы организма и их предупреждением. При этом не будут страдать другие органы и ткани и процедуры станут безболезненными. И таким образом, как мне кажется, удастся существенно повысить продолжительность и качество жизни людей. А возможно, даже приблизиться к самой невероятной цели — бессмертию человека.

 

 

Больше новостей по теме: Нанороботы

 

 

02.10.2017 Источник: ria.ru

Эликсир бессмертия: как ученые пытаются остановить "седое цунами" старости

 

Брайан Кеннеди

 

Брайан Кеннеди, один из ведущих специалистов в изучении старения человека, рассказал о том, существует ли предел жизни человека, и объяснил, почему борьба со старением является сегодня главной задачей для всех государств мира.

Профессор Кеннеди уже почти три десятилетия изучает различные процессы, заставляющие тело и клетки человека стареть, и пытается понять, как можно остановить этот процесс, экспериментируя на животных и добровольцах.

Два года назад его команде удалось обнаружить две сотни генов, возможно, связанных со старением, проводя эксперименты на дрожжах с частично человеческой ДНК. Эти опыты послужили основой для первых экспериментальных терапий по замедлению старения, которые в скором времени начнут проходить клинические испытания на добровольцах в лаборатории Кеннеди в Национальном университете Сингапура.

На прошлой неделе он выступил с публичной лекцией на конференции "ФизтехБиоМед", организованной МФТИ, в рамках которой рассказал о том, чего удалось добиться его лаборатории, как алкоголь влияет на скорость дряхления тела и почему правительства Сингапура и США ставят борьбу со старением населения всей Земли, "седым цунами", на одно из первых мест среди их национальных интересов.

 

— Брайан, в последние годы ваши коллеги часто спорят о том, есть ли предел жизни человека, через который нельзя перешагнуть. Существует он или нет?

— Эти споры оживились в последние годы по той причине, что недавно коллеги провели несколько исследований, посвященных продолжительности жизни самых пожилых людей на Земле. Они показали, что средняя продолжительность жизни на планете продолжала расти в последние годы, однако максимальные ее значения не менялись.

Я смотрю на эту проблему с несколько другой стороны, так как работаю в основном не с людьми, а с животными. С каким бы организмом мы ни работали, во всех случаях нам удалось увеличить максимальную продолжительность жизни. Нет оснований полагать, что это нельзя сделать и для человека.

С другой стороны, этот вопрос, на самом деле, заключается в несколько другом: мы пока не знаем, по каким причинам раньше росла максимальная продолжительность жизни, были это какие-то природные факторы или же какие-то действия самого человека. В будущем, когда мы начнем применять лекарства, продлевающие жизнь, я уверен, что они будут действовать и на самых долгоживущих людей.

 

— Многие ваши коллеги в России считают, что существует генетическая "программа старения", заставляющая животных дряхлеть и уступать место новому поколению. Согласны ли вы с ними?

— Здесь затрагиваются два разных вопроса. С одной стороны, те данные, которые у нас имеются на сегодняшний день, указывают на то, что подобной программы не существует и что дряхление тела происходит само по себе.

Причиной этого является естественный отбор — его влияние на то, как работает организм человека и животного, ослабевает после того, как они уже оставили потомство и прекратили размножаться. С точки зрения эволюции жизнь человека заканчивается уже в 30-40 лет, и это было правдой на протяжении большей части истории человечества, так как почти все наши предки крайне редко доживали до этой отметки.

По этой причине те ошибки в ДНК, которые влияют на нашу жизнь после завершения данного периода, практически не исправлялись в ходе нашей эволюции, что стало мешать человечеству только в последние 200 лет, после появления медицины и начала резкого роста сроков жизни. Появились хронические болезни, уносящие жизни все большего числа людей.

С другой стороны, даже если этой программы нет, нельзя говорить о том, что воздействие на одиночные гены или группы генов не может повлиять на темпы старения. Несмотря на то что старение тела является во многом случайным процессом, некоторые его черты являются общими для человека и множества других животных, и этим можно пользоваться.

К примеру, ограничение калорий продлевает жизнь многим животным не потому, что оно напрямую замедляет старение, а по той причине, что недостаток энергии "включает" наборы генов, связанных со стрессом и недостатком пищи. Эти гены появились в нашей ДНК и в геномах животных не потому, что они связаны со старением, а из-за того, что они помогали им выживать в тяжелых ситуациях. Эта же защита от стресса, как оказалось, помогает организму лучше сопротивляться старению.

 

— Если говорить о животных, то сегодня ученые пытаются найти ключ к старению, экспериментируя на самых разных существах, начиная с дрожжей и заканчивая голыми землекопами. Какое из них быстрее всего приблизит нас к решению этой загадки?

— На  самом деле, ответа на этот вопрос нет, так как каждое животное вносит свой собственный вклад в изучение старения. К примеру, дрожжи и мушки-дрозофилы совершенно не похожи на человека, но их короткий жизненный цикл позволяет нам быстро изучать работу отдельных генов в их ДНК. Как оказалось, многие из этих генов, связанных со старением, имеют свои аналоги в ДНК мышей и, возможно, человека.

С другой стороны, действительно долгоживущие существа, такие как голые землекопы, помогают нам изучать другие процессы, которые крайне сложно уловить или заметить в опытах на дрожжах или мушках. В общем, мы должны проводить исследования на всех модельных организмах, пользуясь различиями в их жизнедеятельности.

 

— Удалось ли вам достичь новых успехов в изучении генов старения на примере ваших дрожжей с человеческими генами?

— Мы уже очень много времени исследуем дрожжи, и сейчас можно сказать, что эти грибки сыграли ключевую роль в изучении старения, так как они помогли нам найти гены SIRT2 и mTOR, воздействие на которые помогло нам заметно продлить жизнь мышам и другим животным.

Сейчас мы пытаемся составить полную картину старения — то, как на этот процесс влияет не один, а все 230 генов, которые мы открыли два года назад, и как они взаимодействуют друг с другом. Это очень долгий процесс, но мы надеемся на то, что дрожжи помогут нам впервые полностью описать то, что происходит при дряхлении тела человека.

 

— Если вам удастся замедлить старение, не приведет ли это к тому, что клетки тела подобного "бессмертного" человека со временем потеряют способность делиться или станут предрасположены к развитию рака?

— Как мне кажется, такой проблемы не возникнет, так как омоложение клеток должно привести и к тому, что они сохранят нормальную способность к делению. Пока наши опыты показывают то, что все экспериментальные методики продления жизни не только увеличивают сроки жизни животных, но и позволяют им оставаться здоровыми гораздо дольше, чем обычно.

Это является главной целью всей моей работы — мне все равно, смогу ли я сделать человека бессмертным, но при этом бесконечно больным. Мне хотелось бы, чтобы люди оставались здоровыми максимально долгое время, и если им при этом удастся прожить дольше, это будет приятным, но дополнительным бонусом.

 

— Относительно недавно ваши коллеги из Калифорнии смогли омолодить мышей, временно включив в их клетках гены, связанные с работой стволовых клеток. Не вызовут ли подобные "экстремальные" формы борьбы со старостью протестов со стороны политиков и публики и можно ли будет их применять на практике в обозримом будущем?

— Как мне кажется, и этот подход, и многие другие методы омоложения необходимо проверить в опытах на добровольцах, однако большинство из них пока не готовы для работы с человеком. Помимо этических причин, есть целый ряд технических проблем, из-за которых результаты тестов на мышах и других грызунах крайне сложно перенести на людей. 

Уже сейчас существуют препараты, а также различные диеты и образы жизни, которые должны сильно влиять на скорость старения человека. И если нам удастся доказать, что эти простые и сравнительно безопасные меры действительно продлевают жизнь, то тогда, как мне кажется, публика будет готова и для более смелых шагов.

Конечно, кому-то могут не понравиться манипуляции с генами и работой клеток, но как, на самом деле, отличаются лечение рака и борьба со старением? С точки зрения медицины возраст и старение являются главными факторами риска в развитии злокачественных опухолей и целого ряда хронических болезней, и поэтому победа над старением будет означать и победу над ними.

По сути, лекарство от старения будет работать и как средство по предотвращению развития рака, болезней сердца и прочих проблем со здоровьем, которые сегодня уносят жизни большинства пожилых людей. Вряд ли у кого-то возникнут этические претензии в наш адрес, если они будут понимать эту связь.

Более того, борьба со старением поможет нам решить или отсрочить главную проблему будущего, "седое цунами", настоящий экономический конец света, порожденный тем, что сегодня на Земле становится все меньше молодых людей и все больше пожилых, которым нужно платить пенсию и за которыми нужно ухаживать.

 

30.09.2017 Источник: ria.ru

Генетики придумали, как найти у людей гены долголетия

Однако нашли не очень много, и на то есть объективные причины

 

Ген счастливой старостиГен счастливой старости

 

Раз уж существуют на свете династии долгожителей — взять хоть нынешнюю английскую королеву с ее мамой — имеет смысл поискать этому естественные предпосылки. В том числе, возможно, и генетические. Сейчас, когда человеческие геномы расшифровывают буквально тысячами, сделать это проще простого: сперва накапливаем данные о всяких индивидуальных особенностях генов (то есть мутациях), а потом выясняем, сколько прожил человек с таким-то и таким-то набором мутаций. Дальше статистический анализ, и дело в шляпе: мы узнаем, какие варианты генов коррелируют с долголетием.

Это сейчас, конечно, была шутка. Ну как вы себе это представляете: ученые запасаются генетической базой данных, а потом начинают обзванивать тех, кто в ней засветился? «Ну как, еще живы? Ой, а этот телефон почему-то не отвечает...» Да даже и такой дурацкий путь неосуществим: большинство клиентов фирм, делающих генетический анализ, оговаривают условие анонимности.

Уважаемый читатель, можете сейчас взять минутную паузу и попробовать придумать, как выявить гены долголетия, не дожидаясь, пока все умрут — путем пусть и трудоемкого, но разового исследования. А потом проверьте, угадали ли вы.

* * *

Американский генетик Ахаманеш Мостафави из Колумбийского университета и его международная команда придумали следующий способ. Смотрите: если мы ищем мутации, из-за которых люди не доживают до старости, то навряд ли мы обнаружим эти мутации у глубоких стариков. К счастью, в базах данных есть информация о возрасте тех, кто предоставил материал для генетического анализа. И надо ожидать, что относительная доля таких мутаций будет заметно снижаться с увеличением возраста носителей. Чуть менее очевидно (хотя на самом деле это следствие ровно того же рассуждения), что у пожилых испытуемых будет чуть более высокая пропорция мутаций, определяющих долголетие, чем в среднем по выборке.

Дальше дело техники: проанализировать генетические данные 215 000 человек из крупнейших баз данных Великобритании и США. Те генетические варианты, частота которых статистически достоверно меняется в зависимости от возраста, и есть то, что нам нужно. На выходе получаем гены счастливой старости и гены преждевременной кончины, не будь всуе помянуты.

Команда исследователей проверила более 8 миллионов мутаций (генетики чаще называют их «однонуклеотидными полиморфизмами, или SNP, или по-русски «снипами»). И их ожидало некоторое разочарование: частота SNP как-то почти не менялась по возрастным группам, а если и менялась, то неубедительно. Из восьми миллионов точек в геноме статистическое сито выловило лишь два SNP. И это не были гены счастливой старости — напротив, это были гены, которые до этой старости дожить, кажется, не позволяют.

Первый такой ген — APOE, про который и так было известно, что он замешан в развитии болезни Альцгеймера. У женщин старше 70 лет мутация в этом гене встречалась значительно реже, чем в среднем по выборке. Второй ген чуть поинтереснее: CHRNA3 коррелирует с сильной зависимостью от никотина у мужчин. Частота этого гена начинала заметно снижаться — опять же у мужчин — уже на пятом десятке.

Замечание в скобках: уважаемые борцы с курением, хотим обратить ваше внимание, что эти данные вообще ничего не говорят о том, будто много курить вредно. Возможно, ген CHRNA3 (вернее, определенная мутация в нем) побуждает своего носителя переживать по пустякам, или например душой болеть за катящуюся в пропасть страну, или бледнеть от гнева при виде несправедливости. От этого, конечно, немудрено угаснуть как свечка во цвете лет, и от этого рука каждые пять минут тянется к сигаретам, но эти два следствия могут быть и не связаны друг с другом. Так что вред курения по-прежнему остается гипотезой. Хотя, конечно, и очень правдоподобной, что уж тут спорить.

Семейная пара охотнее заводит детей, если растить их помогают пожилые родственники. Тем самым, чем дольше живут эти родственники, тем больше у них появляется потомков, вот вам и механизм отбора.

Всего два гена на восемь миллионов — это очень, очень мало, и даже подозрительно мало, — к этому мы вернемся чуть ниже. А пока отметим, что хотя в статистическом сите почти не осталось индивидуальных «мутаций долголетия», зато остались их ансамбли, то есть комбинации. Например, сочетания полиморфизмов, коррелирующие с предрасположенностью к астме, ожирению и высокому уровню холестерина, заметно сходили на нет с возрастом носителя, потому что носители таких сочетаний, очевидно, до преклонного возраста не доживали. Удивительного тут ничего нет: много болел, выглядел скверно, рано умер. Это, конечно, не «гены продолжительности жизни», а просто гены, которые эту самую жизнь портят.

А что же с генами, которые удлиняют жизнь? С теми, которые у столетних старцев встречаются чаще, чем у молодежи? Индивидуальных генов не найдено, а вот сочетания нашлись, и довольно любопытные. Их наличие, кроме возраста носителей, коррелирует с таким любопытным свойством, как задержка репродуктивной зрелости и позднее деторождение. О том, что эти особенности человеческой судьбы как-то связаны с долголетием, было известно и раньше, но объясняли это социальными причинами. Если вы не торгуете на бирже и не работаете в офисе 12 часов в сутки, у вас, скорее всего, много свободного времени, мало способности к самоконтролю и очень, очень мало денег — неудивительно, если вы с таким набором качеств рано залетите, а потом еще и рано умрете. Данные этого исследования показывают, что все сложнее, и у этой истории действительно есть генетическая подоплека.

Но вернемся к главному. Главное вот в чем: мутаций, коррелирующих с продолжительностью жизни, обнаружено подозрительно мало. По мнению авторов, это неспроста. Авторы в своей статье делают смелое предположение: возможно, мутаций, укорачивающих жизнь, так мало потому, что их выметает естественный отбор?

На самый первый взгляд это естественно, а вот уже на второй — противоречит всему, на чем десятилетиями стояла наука геронтология. Эта наука учит: отбору безразлично, что происходит с особью после того, как она даст потомство и воспитает его до репродуктивной зрелости. Когда ваш ребенок вступает в «возраст согласия» и съезжает в съемную однушку, естественный отбор прощается с вами навсегда.

Но что если это не так? Один из возможных путей, по которым отбор может настигнуть вас в преклонном возрасте, антропологи предложили довольно давно: это «эффект бабушки». Суть его в том, что семейная пара охотнее заводит детей, если растить их помогают пожилые родственники. Тем самым, чем дольше живут эти родственники, тем больше у них появляется потомков, вот вам и механизм отбора.

Но если этот механизм действительно работает настолько эффективно, как предполагают результаты данного исследования — почти начисто выметая из популяции все, что способно укоротить век человеческий, — это значит, что отбор уже загнал нашу продолжительность жизни прямо под биологически возможный максимум. А потому все приятные разговоры геронтологов о том, что якобы ничто не мешает нам жить лет по двести, не имеют под собой почвы. Грустно, конечно, но ведь наука и не обещала всегда и во всем нас радовать. Зато обещала открыть нам, как оно все есть на самом деле, — это тоже немало.

В заключение, наверное, надо сказать, что это исследование наверняка будет уточнено, и очень скоро мы узнаем, куда там на самом деле нас ведет отбор. Базы генетических данных растут и пухнут буквально с каждым днем. Лет через пятьдесят в них уже будут данные, покрывающие три поколения людей. Тогда можно будет увидеть динамику человеческой эволюции, не прибегая к ухищрением, а просто сравнивая «было» и «стало».

Мы-то с вами, наверное, до этого не доживем. Если, конечно, рецепт долгой жизни не будет разработан буквально завтра — и тогда подобные исследования начисто потеряют всякий практический интерес. Но пока, на наш вкус, они весьма увлекательны.

 

18.09.2017 Источник: snob.ru

CRISPR-Cas9 стала еще точнее

 

Hyper accurate Cas9

 

Исследователи университета Калифорнии в Беркли и центральной больницы штата Массачусетс идентифицировали ключевой регион белка Cas9, регулирующий точность взаимодействия системы CRISPR-Cas9 с целевой последовательностью ДНК. Это позволило им создать исключительно точный редактор генов, обеспечивающий наиболее низкий на сегодняшний день уровень ошибочных разрезов ДНК.

Белок Cas9 (серого цвета) представляет собой РНК-направляемую нуклеазу, которую можно запрограммировать на связывание и разрезание любой целевой последовательности ДНК (темно-синяя двойная спираль), что делает ее мощным инструментом для редактирования генома. После связывания с мишенью домены белка Cas9 претерпевают конформационные перестройки (перемещения отдельных аминокислот представлены цветными полосками), обеспечивая активацию комплекса Cas9-sgRNA для прицельного разрезания ДНК. Домен REC3 (голубого цвета) отвечает за распознавание мишени, что является сигналом к ротации наружу домена REC2 (сиреневого цвета), открывающей проход нуклеазному домену HNH (желтого цвета). Эта активная конформация Cas9 обладает способностью запускать согласованное разрезание двух цепочек ДНК-мишени.

Система CRISPR-Cas9 в настоящее время используется для прицельного разрезания молекул ДНК и их последующего редактирования. Исследователи постоянно работают над повышением точности этого подхода. Одной из стратегий этого поиска является создание мутаций в REC3 – главном домене белка Cas9 – и оценка их положительного влияния на точность метода без снижения эффективности в отношении количества неточных разрезов. Эксперименты показали, что даже незначительные изменения домена REC3 влияют на количественное соотношение между точными и неточными разрезами.

В своей последней работе авторы использовали методику, известную как одномолекулярный резонансный перенос энергии флуоресценции, для точного изучения того, как различные домены белкового комплекса Cas9-РНК двигаются при его связывании с ДНК.

Это позволило им установить, что домен REC3 ответственен за определение точности связывания с мишенью, что является сигналом к ротации наружу домена REC2, открывающей проход нуклеазному домену HNH, активируя «ножницы». Эта активная конформация Cas9 обладает способностью запускать согласованное разрезание двух цепочек ДНК-мишени.

После этого исследователи показали, что путем мутирования разных регионов REC3 можно изменять специфичность белка Cas9 таким образом, что нуклеаза HNH активируется только когда направляющая РНК и специфичный фрагмент ДНК-мишени находятся в непосредственной близости. Им удалось создать улучшенную гипер-точную Cas9, получившую название HypaCas9. В человеческих клетках новая версия фермента несколько лучше отличает целевые регионы ДНК от нецелевых при сохранении эффективности воздействия на целевые фрагменты.

Авторы надеются, что изучение взаимосвязи между структурой, функциями и динамикой Cas9 позволит им создать еще более чувствительные и эффективные вариации фермента для внесения в ДНК различных модификаций.

 

Статья Janice S. Chen et al. Enhanced proofreading governs CRISPR–Cas9 targeting accuracy http://www.nature.com/nature/journal/vaap/ncurrent/full/nature24268.html опубликована в журнале Nature.

27.09.2017 Источник: vechnayamolodost.ru по материалам University of California, Berkeley: Discovery helps engineer more accurate Cas9s for CRISPR editing.

Частичное перепрограммирование восстанавливает молодую экспрессию генов за счет временного подавления идентичности клеток

 Авторы: Antoine Roux, Chunlian Zhang, Jonathan Paw, José Zavala-Solorio, Twaritha Vijay, Ganesh Kolumam, Cynthia Kenyon, Jacob C. Kimmel     Аннотация   Сообщалось, что временная индукция...

Читать далее

Профилирование эпигенетического возраста в отдельных клетках

 Авторы: Александр Трапп, Чаба Керепеси, Вадим Николаевич Гладышев     Аннотация   Метилирование ДНК определенного набора динуклеотидов CpG стало критическим и точным биомаркером процесса старения. Многовариантные модели машинного обучения, известные как...

Читать далее

Эпигенетические часы показывают омоложение во время эмбриогенеза, с последующим старением

      Краткое содержание   Представление о том, что клетки зародышевой линии не стареют, возникло еще  с 19-го века от идей Августа Вейсманна. Однако...

Читать далее

Мультиомиксное омоложение клеток человека путем кратковременного перепрограммирования в фазе созревания

      Краткое содержание   Старение - это постепенное снижение физической формы организма, которое со временем приводит к дисфункции тканей и заболеваниям. На клеточном...

Читать далее

Универсальный возраст по метилированию ДНК в тканях млекопитающих (препринт)

Новые результаты       Старение часто воспринимается как дегенеративный процесс, вызванный случайным накоплением клеточных повреждений с течением времени. Несмотря на это, возраст можно...

Читать далее

Ограниченное омоложение старых гемопоэтических стволовых клеток в молодой нише костного мозга

      Гемопоэтические стволовые клетки (HSC) с возрастом обнаруживают функциональные изменения, такие как снижение регенеративной способности и миелоидно-зависимая дифференцировка. Ниша HSC, которая...

Читать далее

Разведение плазмы улучшает когнитивные функции и снижает нейровоспаление у старых мышей

      Наше недавнее исследование установило, что факторы молодой крови не являются причиной и не являются необходимостью для системного омоложения тканей млекопитающих...

Читать далее

Пора кончать со старой кровью - Джош Миттельдорф

      2020 год обещает нам, что мы сможем сделать наши тела молодыми без явного восстановления молекулярных повреждений, но лишь просто изменив...

Читать далее

Омоложение тканей трех зародышевых листков путем замены плазмы старой крови солевым раствором альбумина

     Аннотация   Гетерохронный обмен крови омолаживает старые ткани, и большинство исследований о том, как это работает, фокусируется на молодой плазме, ее фракциях...

Читать далее

Обращение возраста: измерение эпигенетического возраста двух разных видов с помощью одних часов

   Аннотация   Известно, что молодая плазма крови оказывает благотворное влияние на различные органы у мышей. Однако не было известно, омолаживает ли молодая...

Читать далее

Прорыв в омоложении

  Если вы избегаете громких заявлений и в течении длительного времени соблюдаете дисциплину недосказывания посреди яркого неонового мира, то возможно вы...

Читать далее

Трансплантация ACE2-мезенхимальных стволовых клеток улучшает результат лечения у пациентов с пневмонией, вызванной COVID-19

Озвучить текст роботом: 

    Краткое содержание   Коронавирус (HCoV-19) вызвал новую вспышку коронавирусной болезни (COVID-19) в Ухане, Китай. Профилактика и реверсия...

Читать далее

Диагностика старения на основе 9 признаков «Hallmarks of Aging»

  “Если вы не можете измерить это, вы не можете улучшить его”, — так сказал Уильям Томсон, великий ирландский физик известный...

Читать далее

Паттерны биомаркеров старения, смертности и вредных мутаций проливают свет на начинающееся старение и причины ранней смертности - Гладышев 2019

Основные моменты Смертность от возрастных заболеваний U-образная с надиром ниже репродуктивного возраста Количественные биомаркеры старения постоянно меняются на протяжении всей жизни Бремя мутаций...

Читать далее

Клеточное старение. Определение пути вперед

Клеточное старение - это состояние клетки, вовлеченное в различные физиологические процессы и широкий спектр возрастных заболеваний. В последнее время быстро растет...

Читать далее

Видео: Суть старения и путь к долголетию - Гладышев В.Н.

Лекторий МГУ: Вадим Николаевич Гладышев, 28 мая 2019 г. 17.00Тема лектория: «Суть старения и путь к долголетию». Профессор Факультета биоинженерии и...

Читать далее

Японцы получили разрешение скрестить эмбрион человека и животного

Ученые давно проводят эксперименты по выведению различных гибридных видов животных. Как правило, это относится к лабораторным животным, опыты над которыми...

Читать далее

Мыши смогли восстановить ампутированные пальцы при помощи двух белков

  Возможно, в будущем люди смогут восстанавливать потерянные конечности — на это, во всяком случае, намекают медицинские эксперименты. Ученым уже известно...

Читать далее

Израильские учёные разработали универсальное лечение против рака

    Небольшая группа израильских учёных считает, что они нашли первое универсальное лечение против рака.  «Мы считаем, что через год мы предложим универсальное...

Читать далее

Клинические испытания первой омолаживающей терапии

    Самое первое человеческое испытание сенолитических лекарств, было объявлено ещё в июне, и большая часть мира практически не обратила внимания на него...

Читать далее

Старение внеклеточного матрикса

    Данная статья собрана из нескольких моих ранних заметок о влиянии внеклеточного матрикса на процесс старения. Текст статьи будет обновляться — я планирую...

Читать далее

Обзор достижений в борьбе со старением в 2018 году

   Каким был 2018 год в борьбе со старением? Год начался с хорошей новости. Под давлением общественности, ученых, организаций и сторонников борьбы со...

Читать далее

Таблетка от старости и кровь младенцев: достижения науки о старении в 2018 году

    2018-й принес обнадеживающие результаты в борьбе со старением и стал годом взрывного роста бизнеса на бессмертии. Начались испытания сенолитика — препарата, убивающего стареющие клетки, ключевого...

Читать далее

Китайский ученый заявил о рождении первых в мире генетически модифицированных детей

  Китайский ученый Цзянькуй Хэ заявил о рождении первых в мире детей из генетически отредактированных эмбрионов. По словам ученого, родились близняшки, у которых он попытался создать устойчивость к заражению...

Читать далее

Новая веха в медицине: Создан первый в мире сканер для всего тела

    Исследователи и ученые из Калифорнийского университета в Дейвисе со своими китайскими коллегами из компании United Imaging Healthcare (UIH) создали аппарат...

Читать далее

Первая искусственная роговица, напечатанная на 3D-принтере, уже готова для трансплантации

    Роговица — это крайне важная, но очень хрупкая часть нашего органа зрения. Она очень легко подвержена травмам и различным заболеваниям...

Читать далее

Ученые создают лазерный кожный регенератор из «Стартрека»

     Технологии из научно-фантастической вселенной «Стартрек» продолжают проникать в нашу реальную жизнь. Мы уже читали о медицинском трикодере, слышали о разработках...

Читать далее

Ученые создали универсальные имплантаты, которые не будут отторгаться организмом

  Любые материалы (в том числе и биологические), которые не созданы нашим организмом, в любом случае являются чужеродными и будут отторгаться...

Читать далее

«Получи я миллиард долларов сегодня, мы победили бы старение на 10 лет раньше. Это 400 миллионов жизней»

      Обри де Грей: большое интервью   В Москву на конференцию «Future in the City», которая пройдет 18 и 19 июля в башне «Империя» в Москва-Сити...

Читать далее

Генетик из Гарварда создал стартап по омоложению собак

В дальнейшем ученый намерен распространить исследования на людей.     Генетик, молекулярный инженер и химик Джордж Черч из Гарварда основал стартап Rejuvenate Bio...

Читать далее

Как наука приближает бессмертие к реальности?

    Поиски Понсе де Леоном фонтана вечной молодости могут быть легендой, но основная идея — поиск лекарства от старости — вполне реальна. Люди...

Читать далее

Секрет вечной жизни точно скрывается в наших клетках

    Однажды могущественный шумерский король по имени Гильгамеш отправился на происки, как это часто делают персонажи мифов и легенд. Гильгамеш стал...

Читать далее

Геронтологи готовы к прорыву

Остановись, старенье!   Ведущие ученые из 17 стран приехали в Россию, чтобы решить проблему старения. Именно теперь, по их мнению, накоплен критический...

Читать далее

Моя улучшенная версия: как жить вечно

      Джордж Чёрч [George Church] возвышается над большинством людей. У него длинная серая борода волшебника Средиземья, а работа всей его жизни...

Читать далее

Клеточная терапия без клеток: омоложение внеклеточными везикулами

  Восстановление сердечной мышцы после месяца терапии внеклеточными везикулами. Иммунные метки: агглютинин (красный), тропонин (зеленый) и DAPI (голубой)   Исследователи Колумбийского университета, работающие...

Читать далее

Биологи впервые собрали мышиный «эмбрион» прямо из стволовых клеток

  Бластоциста состоит из внешнего слоя клеток, из которого развивается плацента, и внутреннего – будущего детёныша. Здесь и ниже иллюстрации Nicolas...

Читать далее

Способ борьбы со старением: обращение вспять процесса снижения концентрации НАД+

    Старение сопровождается развитием метаболических нарушений и дряхлением. Недавние исследования продемонстрировали, что снижение уровня никотинамидадениндинуклеотида (НАД+) – ключевой фактор замедления обменных процессов, связанного...

Читать далее

Лекарства от старения, и Где они обитают

Время напрямую людей не убивает, старение – это биологический процесс. Есть группа заболеваний, которые называют возраст-ассоциированными, или старческими. Основным фактором риска...

Читать далее

Создан микроскоп, позволяющий наблюдать за движением клеток внутри организма

Ученые из Медицинского института Говарда Хьюза усовершенствовали метод флюоресцентной микроскопии таким образом, что теперь с ее помощью можно снимать в...

Читать далее

Ученые имплантировали маленький человеческий мозг мыши

Имплантация органов и тканей – вещь в науке далеко не новая. Не первый день существуют и так называемые кортикальные наборы...

Читать далее

В человеческих клетках впервые обнаружена новая форма ДНК

Ученые из австралийского Института медицинских исследований Гарвана сообщили об открытии в клетках человеческого организма необычных структур ДНК – i-мотивов (intercalated-motif...

Читать далее

Нанонож лишнего не отрежет: хирурги тестируют точечную терапию рака

Самое распространенное среди мужчин онкологическое заболевание, рак простаты, которым страдает примерно четверть пациентов урологических стационаров, до недавнего времени лечили хирургически — удаляли...

Читать далее

В США впервые в мире провели комплексную пересадку пениса и мошонки

Врачам из больницы Джона Хопкинса (штат Мэриленд) удалось провести успешную комплексную трансплантацию пениса и мошонки. Операция длилась 14 часов, в...

Читать далее

Антиоксидант MitoQ омолаживает сосуды

Результаты, полученные исследователями университета Колорадо в Боулдере, работающими под руководством профессора Дага Силса (Doug Seals), еще раз подтвердили, что применение...

Читать далее

Эпидемия молодости: как прожить 120 лет и стать счастливым

    Около 5% нынешних молодых и богатых проживут 120 лет и дольше, считают биохакеры. Читайте, что для этого нужно делать. Осенью 2017...

Читать далее

Имплантация пигментного слоя сетчатки помогла сохранить зрение

    Борьба с заболеваниями, которые в той или иной степени угрожают жизни человека – одно из самых приоритетных направлений современной медицины...

Читать далее

В США протестировали мозговой имплантат для улучшения памяти

    Американские исследователи провели проверку имплантата-электростимулятора, призванного усилить память. В среднем способность к запоминанию слов удалось улучшить на 15%. Если технология пройдет...

Читать далее

Ученым впервые удалось воссоздать легочную ткань

    Лечение стволовыми клетками находит все большее применение в медицинской практике. Так, например, группа китайских ученых из Университета Тунцзи не так...

Читать далее

Ученые МИЭТа планируют начать серийное производство аппарата вспомогательного кровообращения для детей уже в этом году

    В 2012 году благодаря ученым нашего университета была осуществлена первая в России успешная операция по имплантации «искусственного сердца» человеку. К...

Читать далее

Первый шаг к тканеинженерным надпочечникам

    Исследователи лондонского университета королевы Марии, работающие под руководством доктора Леонардо Гуасти (Leonardo Guasti), использовали репрограммированные клетки для создания первого прототипа...

Читать далее
Image

Оцифровка пользователя, Моделирование, 3D-визуализация.

Создание подробной цифровой копии на основе данных из медкарты.

Анализ данных. Исправление показателей организма.

Image

Взаимодействие цифровых профилей с целью улучшения показателей.

Обмен знаниями, проведение общих исследований.

Загрузка личного аватара в 3D мир. Игрификация, соревнования.

Image

В разработке

  • Официальная страница о медицинских чат-ботах на сайте Сверхчеловечество.рф
  • Подробности разработки чат-бота для проекта "Карта управления возрастом" (для партнеров и разработчиков) здесь:
Image

Обзор мировых разработок по хранению данных в разработке

Хранилище данных для Электронной Медицинской Карты Управления Возрастом в разработке

Материалы по теме:

Image

Основное взаимодействие планируется производить посредством Социальной сети:

Также существует множество специализированных телемедицинских сервисов:

Image

Данный раздел находится в разработке и будет доступен после запуска Электронной медицинской Карты Управления Возрастом:

Image

Основной материал сайта по теме искусственного интеллекта в медицине здесь:

На основе данной статьи будет определяться разработчик искусственного интеллекта для данной системы управления возрастом.

Image

ВАШ ЛИЧНЫЙ ВКЛАД В БОРЬБУ СО СТАРЕНИЕМ

Скооперируйтесь с тысячами других участников и создайте любой проект в области антистарения, проведите научные исспедования

Площадка для создания и финансирования проектов. Официальная страница сайта Сверхчеловечество.рф для сбора средств на ускорение прогресса в области омоложения:

Image
Image

Основная страница сайта Сверхчеловечество.рф о создании и участии в клинических испытаниях терапий антистарения и отката возраста организма здесь: