Короткометражка «За гранью» о последнем сверхчеловеке на Земле

 446532445 1280x720

Если бы вы могли телепортироваться, как бы вы использовали эту сверхспособность? Отправились бы в путешествие по всей планете, заскочив при этом в парочку банковских сейфов? Или одной Земли было бы для вас недостаточно?

Короткометражный фильм лос-анджелесского режиссера и сценариста Рафаэля Роджерса (Raphael Rogers) рассказывает историю Арии Веги. Эта девушка – последний на Земле человек с уникальной ДНК, позволяющей ей пережить разлом во времени и пространстве – проще говоря, путешествовать за грань.

Эти гены есть только у ее семьи. Однако кроме Арии никого больше нет в живых. Каждый из них пропал на задании – во время поиска жизни на других планетах. 

Источник: naked-science.ru

 

 

Биороботы: фантастика или реальность?

 Biorobot«Мы с тобой одной крови?» (Р. Киплинг, «Маугли»)

 

Ключевая особенность человека — жажда творить. На протяжении веков лучшие умы создавали нечто новое, меняя жизнь к лучшему, — когда плавно, когда кардинально. Изобретения, в свое время сотрясшие мир, казались несбыточной реальностью. Электричество, всемирная информационная сеть Интернет — теперь это наша обыденность, привычная и скучная. Уклад двадцать первого века схож с волшебством, фантастикой для предыдущих поколений. Возможно, и мы с таким же изумлением будем созерцать инновационные технологии, которые у наших внуков не будут вызывать и капли удивления. Бегут столетия, мир постоянно меняется, трансформируется. Только желание ученых постичь и создать нечто новое не ослабевает. Благодаря их стараниям то, что фигурирует в фильмах о будущем, скоро станет реальностью. Телепортация, полеты в космос сродни поездкам на автобусе — список можно продолжать бесконечно, пока не истощится воображение. Однако в этот раз мы поговорим о другом. О биороботах.

 

«Нет ничего более изобретательного, чем природа»

 

Трудно создать биологическую систему более совершенную, чем та, что уже существует в природе. В ней нет ничего лишнего, эволюция сделала все за человека — и ученым достаточно лишь внести свои коррективы в отлаженный временем механизм. Лаборатория iBionicS Университета Северной Каролины в 2012 году представила радиоуправляемого таракана (рис. 1). Принцип его действия заключается в воздействии на нервную систему через сенсоры-усики.

 

01.robot tarakanРисунок 1. Сопоставление размеров модифицированного насекомого с монетой США номиналом 25 центов (диаметр — 2,4 см). Рисунок с сайта www.slate.com.

 

На спине насекомого закрепляли чип, подающий сигналы на антенны таракана и таким образом корректирующий траекторию его движения (видео 1). Перед учеными встала непростая дилемма: для успешной работы чипа требовались батарейки, которые значительно утяжеляли таракана. Было найдено изящное решение, которое можно назвать демонстрацией слаженной работы научных отраслей: с помощью физики удалось отыскать новое применение естественным биологическим процессам в организме таракана. При переваривании пищи таракан выделяет сахар трегалозу. На одном из электродов трегалоза раскладывается на две молекулы глюкозы. С помощью фермента гексокиназы происходит реакция фосфорилирования глюкозы и образуется глюкозофосфат. Эта реакция сопровождается выделением электронов, которые движутся ко второму электроду, то есть создают электрический ток. Ученым удалось добиться того, что таракан своей жизнедеятельностью сам и обеспечивает успешную работу чипа. Внедренные технологии удачно вписались в отлаженные эволюцией механизмы.

 

Видео 1. Движение радиоуправляемого таракана

 

В марте 2016 года было опубликовано другое исследование, также связанное с управлением насекомыми, но основанное на ином принципе. Группа ученых Наньянского университета работала с жуками Mecynorhina torquata [1]. Воздействие производили на группы мышц жуков, ответственные за движение лапок (рис. 2). То есть стимулировали опорно-двигательный аппарат, а не нервную систему.

 

02.stroenie nog zhukaРисунок 2. Анатомия передней ноги жука. а — Мышцы верхней стороны тела жука. б — Мышцы с нижней стороны. Крестиками помечены группы мышц, стимулируемые электрическими импульсами. Рисунок из [1].

 

Меняли очередность воздействия и его силу — таким образом регулировали скорость передвижения жука (рис. 3).

 

03.shirina shaga zhukaРисунок 3. Отслеживание ширины шага и скорости перемещения жука. Красные кресты указывают координаты передней ноги и рога жука, по которым высчитывалась ширина шага, калибруемая по обычной линейке. Рисунок из [1].

 

Его перемещения отслеживались с помощью технологии захвата движения. Три специальные камеры отслеживали движения жука и представляли их в виде передвижений упрощенной трехмерной модели насекомого. Биология, физика и информатика внесли свой неоценимый вклад в конечный результат — рисунок 4.

 

04.ustanovka dlja izmerenija shagovРисунок 4. Установка для захвата движения насекомого и компьютерная модель. а — Компьютерная система захвата движений. б — К передним ногам и спине жука прикрепляли светоотражающие маркеры для отслеживания движений. в — Собранные 3D-данные о движении преобразовывали и показывали в виде трех независимых графических сегментов. Рисунок из [1].

 

Модифицированные насекомые давно будоражат людское воображение. Они обладают отличной проходимостью, которая может пригодиться в шпионской деятельности. Подобное применение освещалось в кинематографе и имеет неоспоримые преимущества (видео 2).

 

Видео 2. Отрывок из фильма «Пятый элемент» (режиссер Л. Бессон)

 

Однако насекомые-киборги пригодятся и в более мирных целях. Например, в поиске пострадавших под завалами.

 

Создавая новое

 

Но вместе с тем ученые ставят перед собой и более амбициозные задачи. Как насчет того, чтобы создать нечто новое? В 2012 году сотрудники Гарвардского университета и Калифорнийского технологического института продемонстрировали созданную ими искусственную медузу (рис. 5) [2]. «Медузоид» — это первый в мире искусственный мускул, состоящий из смеси специальных полимеров и мышечных волокон крысы.

 
05.meduzoidРисунок 5. Конструкция из силикона и клеток сердца крыс, повторяющая настоящую медузу. Рисунок с сайта www.mk.ru.
 

Мышечные волокна, взятые из клеток сердечной ткани мышей, выращены на полимерной матрице. В качестве материала для нее использовали полидиметилсилоксан, который по свойствам близок к соединительной ткани медуз — мезоглее. Необходимой формы добивались с помощью нанесения рисунка из протеинового раствора.

Ориентируясь на строение медузы ушастой аурелии (Aurelia aurita), ученые добились такого же принципа перемещения для биобота. Он двигается за счет выталкивания жидкости, для чего необходимо сокращение мышц. Для обеспечения этого «медузоид» был помещен в электропроводящий соляной раствор. Под воздействием электрических импульсов происходит сокращение мышечных клеток, и биоробот осуществляет движение. Пока не удается достичь полного контроля траектории его движения, но данное направление является весьма перспективным. Работа ведется активно и вдохновляет ученых на новые свершения.

Данное исследование дало толчок следующему. В 2016 году группа ученых из Гарварда представила мировой общественности разработку — «золотого» ската* (рис. 6) [3, 4].

* — Подробнее об искусственном скате можно прочитать на «биомолекуле»: «Мечтают ли батоиды об электрокрысах?» [5]. — Ред.

 

06.glaz i skatРисунок 6. Глаз и скат. Сейчас мы наблюдаем за скатом, а потом он поможет нам наблюдать за другими организмами. Рисунок из [4].

 

Это система по принципу строения во многом напоминает ската природного (рис. 7).

 

07.stroenie iskustvennogo skataРисунок 7. Особенности строения искусственного ската. а — Живой скат. б — Строение плавника живого ската. в — Четыре слоя тела искусственного ската: слой 1 — корпус из полидиметилсилоксана (силикона, применяемого в медицине, косметологии и даже пищевой промышленности); слой 2 — золотой скелет; слой 3 — снова тонкий слой полидиметилсилоксана, на котором расположены мышечные клетки (слой 4). г — Концепт. д — Обхождение препятствий в зависимости от интенсивности подаваемого сигнала. Рисунок из [3].

 

Немаловажную роль в исследовании сыграли химия и оптогенетика*. Благодаря химическим свойствам золота, а именно нереагентности в нормальных условиях, его и выбрали в качестве материала для скелета. Оптогенетика позволила разработать технологию контроля движения ската. Предварительно в мышечных клетках был изменен геном: ученые внедрили ген, отвечающий за выработку в клетке светочувствительного белка KR2. Под воздействием световых импульсов он становится переносчиком ионов натрия, создает электрический потенциал, вследствие чего клетки сокращаются и скат движется (видео 3).

* — Очень доступно о том, как хитроумно работает оптогенетика рассказано в статье «Светлая голова» [6]. А как оптогенетика может заставить видеть даже в случае тотального повреждения фоторецепторных клеток сетчатки, описано в статье «Оптогенетика + голография = прозрение?» [7]. — Ред.

 

Видео 3. Как с помощью живых мышечных клеток и импульсов света удается успешно управлять созданным в лаборатории биоботом

 

Приведенные выше исследования доказывают: наука вышла на достаточно высокий уровень, чтобы создавать квазиорганизмы искусственным путем, ориентируясь на природные подобия. Пока предприняты лишь первые шаги, которые открывают дорогу более продвинутым исследованиям. Возможно, в скором будущем ученым удастся создать биороботов, более сложных в строении и менее ограниченных в плане среды и условий существования.

 

Полет фантазии

 

В результате эволюции организмы, ныне живущие на Земле, достигли совершенства. Все процессы для их успешной жизнедеятельности отлажены и дополняют друг друга. Казалось, не нужно ничего более. Однако не существует границ для человеческой фантазии. Если наличествует должный научный аппарат, почему бы не создать нечто новое, не имеющее аналога в природе? Группа ученых из Университета Иллинойса сделала первые шаги в этом направлении. В 2012 году был показан биобот, приводимый в действие клетками сердечной ткани мышей [8, 9]. Он представлял собой 3D-напечатанный каркас из гидрогеля* с высеянными на его поверхность кардиомиоцитами (рис. 8). Клетки сокращаются и расслабляются самостоятельно при соблюдении определенных внешних условий, и биобот размером не более 1 см двигается.

* — Некоторое время назад «биомолекула» писала о полумягком роботе-прыгуне, тоже созданном посредством 3D-печати: «3D-принтер произвел на свет полумягкого робота-прыгуна» [10]. — Ред.

 

08.karkas iz gidrogeljaРисунок 8. Движения биобота на клетках сердечной мышцы. Рисунок с сайта news.nationalgeographic.com.

 

Однако контролировать сокращение сердечных клеток — непростая задача, и в 2014 году та же группа ученых представила модернизированную версию биоробота: уже с использованием клеток скелетных мышц мышей (рис. 9). Под воздействием электрических импульсов, подаваемых с внешнего электронного устройства, они сокращаются, вследствие чего биобот передвигается.

 

09.gidrogel i myshcyРисунок 9. Строение биобота: гидрогелевый каркас и скелетная мышечная ткань. Рисунок с сайта www.dailymail.co.uk.

 

Скорость движения регулируется частотой подаваемого поля — это было установлено экспериментально (видео 4).

 

Видео 4. Напечатанные на 3D-принтере биоботы, приводимые в движение мышечными клетками и управляемые электическими импульсами

 

Разработанная технология позволяет использовать гидрогелевые каркасы различных форм и дает достаточно свободы для дальнейших изысканий. Уже достигнутый контроль над движением биоробота планируется улучшить. Ученые собираются внедрить в мускульные ткани нейронные сети. Это усложнит алгоритмы движения, но позволит подключить иные способы управления, например, светом или химическим составом среды.

 

Большие надежды

 

Двадцать первый век — время, когда достижения науки позволяют претворять давние мечты в жизнь. Описанные типы биороботов могут найти применение во многих сферах жизни человека. Насекомые-киборги пригодятся в шпионаже и операциях МЧС, оптогенетика позволит создать дронов, держащихся в воздухе за счет сокращения мышечных колец. Военную отрасль будут ждать кардинальные перемены. Биороботы, аналоги природных созданий, пока ограничены средой, однако в будущем эти рамки будут преодолены. Станет возможным создание биороботов более сложной структуры, которые превзойдут живые оригиналы. Появится новое направление в биологии — разве могли предыдущие поколения даже мечтать о подобном?

Фантастика становится реальностью. Ученым двадцать первого века выпал счастливый шанс не только наблюдать, но и принять участие в этом увлекательном процессе.

 

20.09.2016 Источник: biomolecula.ru

Возможно, нервные клетки удастся восстановить

Нервные клетки

 

Ученые из Университета Висконсин-Мэдисон обнаружили переключатель, который перенаправляет вспомогательные клетки в периферическую нервную систему в режим «ремонта» и помогает восстанавливать поврежденные аксоны.

Аксоны — это длинные волокна нейронов, которые передают нервные импульсы. Периферическая нервная система, сигнальная сеть за пределами головного и спинного мозга, имеет некоторую способность восстанавливать поврежденные аксоны, но этот ремонт проходит медленно и зачастую безрезультатно.

Новое исследование предлагает тактику, которая могла бы запустить или ускорить этот естественный механизм восстановления и помочь, например, в лечении после физических травм, говорит Джон Сварен, профессор компаративных бионаук в Школе ветеринарной медицины Университета Висконсин-Мэдисон. Эти результаты могут быть также полезны для лечения генетических аномалий вроде болезни Шарко-Мари-Тута или повреждений нерва от диабета.

Шванновские клетки (леммоциты) создают изолирующую миелиновую оболочку, которая ускоряет передачу нервных импульсов. В режиме восстановления леммоциты создают «ремонтную бригаду», которая добавляет стимуляцию отрастания нерва к обычной работе изоляции. Сварен, старший автор работы, опубликованной 30 августа в Journal of Neuroscience, изучал, как леммоциты, обнимающие аксоны в периферической нервной системе, преобразуются и начинают играть более активную и «умную» роль после повреждения.

Сварен и его аспирант Джозеф Ма сравнили активацию генов в шванновских клетках у мышей с неповрежденными или вырезанными аксонами. «Мы увидели набор скрытых генов, которые становятся активны, но только после травмы», говорит Сварен, «и они начинают программу, которая помещает леммоциты в режим восстановления, в котором они выполняют несколько видов работы, необходимых для отрастания аксона».

В этом режиме починке, но не в обычном, шванновские клетки начинают убираться по дому, помогая растворять миелин, который необходим для правильного функционирования, но по иронии судьбы мешает регенерации после травмы. «Если вы пригласите шванновские клетки на вечеринку, — говорит Сварен, — они начнут убирать бутылки и мыть посуду, пока все не уйдут».

Эта зачистка должна происходить в течение нескольких дней после повреждения, говорит Сварен. Шванновские клетки также выделяют сигналы, которые призывают кровяные клетки к помощи в очистке, намечают путь отращивания для аксона. Наконец, они возвращаются к роли изолятора, выращивая замену миелиновой оболочки на регенерированном аксоне.

Неожиданно было обнаружено, что переход леммоцитов в ремонтную форму не включал возврат к более примитивной форме, а скорее был основан на изменении в регуляции его генов.

«Почти все другие реакции нервной системы на травму, особенно в мозге, нуждаются в стволовых клетках, чтобы повторно отрастить клетки, но здесь нет никаких стволовых клеток», говорит Сварен. «Шванновские клетки перепрограммируют себя, чтобы запустить программу по ремонту травмы. Мы увидели в них активных игроков с двойной роль по защите и регенерации аксона, и мы исследуем, какие факторы определяют начало и эффективность программы».

После того, как человеческий геном был расшифрован, эпигенетика — изучение регуляции генов — переместилась на передний план. Мы поняли, что гены не имеют особого значения, если их не включить, и эти генетические переключатели играют важнейшую роль в том, почему клетки кожи не похожи на клетки нервов, а нервные клетки работают не так, как клетки крови.

В эпигенетике, как и в остальной биологии, процессы зачастую регулируются балансом между сигналами «стоять» и «идти». В случае с переходом шванновских клеток, Сварен и Ма идентифицировали систему под названием PRC2, которая по сути заглушает ремонтную программу. «Этот путь сводится к переключателю «вкл/выкл», который обычно выключен», говорит Сварен, «и мы хотим узнать, как включить его, чтобы начать процесс восстановления».

Природа системы глушителей генов высшего уровня предложил препараты, которые могли бы убрать метку заглушки с интересующих генов; Сварен говорит, что определил фермент, который может «убрать с тормоза» и намеренно активировать программу ремонта в случае необходимости ответа на травму.

Даже если испытания лекарств будут проходить успешно, потребуются годы экспериментов, прежде чем эту систему испытают на людях. Кроме того, до конца непонятно, насколько хорошо может регенерировать аксон. Едва ли эта одна дорожка приведет к панацее, но они надеются, что она станет важной.

В конечном счете это исследование могло бы открыть новую дверь к регенерации хотя бы одного ключевого сектора нервной системы.

18.09.2016 Источник: hi-news.ru

Транспозонная теория старения. Организм стареет из-за «вытекания» участков ДНК

Транспозонная теория старения

 

Ученые под руководством специалистов из Университета Брауна (США) предложили новую теорию старения организма.

Они провели эксперимент, который показал, что старение связано с миграцией транспозонов (участков ДНК, свободно перемещающихся внутри генома) из одной хромосомы в другие. Оказалось также, что эту миграцию, а значит и само старение, можно замедлить – с помощью голодания и активации работы определенных генов.

В настоящее время существует несколько теорий старения. Считается, что организм стареет из-за многих факторов. Например, с возрастом начинает портиться работа белков, митохондрий, накапливаются генетические повреждения, ломается механизм регуляции генов, портятся белки-гистоны, в которые «упакована» ДНК. Две самые популярные теория старения – это накопление в клетках активных форм кислорода и укорачивание длины теломер (повторов коротких последовательностей нуклеотидов на концах хромосом).

Похоже, что к этому списку добавилась еще одна теория – транспозонная теория старения.

Транспозоны – это участки ДНК, которые могут перемещаться внутри генома. Наподобие вирусов они внедряются в хозяйский геном и размножают себя в виде множества копий. Некоторые из них впоследствии начинают влиять на работу генов и иногда оказываются очень полезны. Но, если транпозоны покидают «свою» хромосому, это приводит к сбою работы клетки.

Известно, что по мере старения организма, транспозоны прорывают оболочку хроматина и выходят «блуждать» на свободу.

В своем нынешнем эксперименте на мушках дрозофилах ученые решили выяснить, как именно это происходит.

Под микроскопом они наблюдали за поведением транспозонов и увидели, как эти участки ДНК начинают «вытекать» из хроматина по мере старения дрозофил. Интересно, что скорость такого «вытекания» не была равномерной. «Дрозофилы достигали определенного возраста, а затем транспозоны начинали выходить из хроматина. Дальше скорость, с которой они покидали хромосомы, увеличивалась по экспоненте», - говорит ведущий автор исследования Джейсон Вуд (Jason Wood).

Интересными оказались результаты и второго эксперимента, когда с помощью генетических манипуляций удалось приостановить процесс старения, замедлив «вытекание» транспозонов из хромосомы.

Например, активация гена Su(var)3-9, который отвечает за упаковку хроматина (этот ген есть не только у дрозофил, но и у млекопитающих), приводила к тому, что у мушек увеличивалась продолжительность жизни на 20 дней (с 60 до 80).

Привела к успеху и другая манипуляция: активация гена Dicer-2, который способен ингибировать активность транспозонов и препятствует их свободному перемещению, также приводила к увеличению продолжительности жизни дрозофил.

Интересно, что, когда насекомых ограничивали в пище, это тоже приводило к увеличению продолжительности их жизни.

Конечно, добавляют авторы, вопросов здесь остается еще очень много.

«Существует множество механизмов, которые отвечают за старение. Мы будем работать над тем, чтобы понять полную картину этого процесса», - говорит Вуд.

Ученые уже получили грант в размере 9,5 миллионов $ для дальнейших исследований.

О результатах своей работы они сообщают в свежем выпуске журнала Proceedings of the National Academy of Sciences.

13.09.2016 Источник: infox.ru

В США запретили замалчивать результаты клинических испытаний

Плацебо в клинических испытанияхТаблетки плацебо, которые используются в качестве контроля при проведении испытаний

 

Американские власти ужесточили требования к обнародованию результатов клинических испытаний медикаментов. Соответствующий окончательный регламент выпустили совместно Минздрав США и Национальные институты здоровья (NIH). Пояснительная статья к ней опубликована в JAMA.

Клинические испытания лекарств, биомедицинской продукции и медтехники служат основанием для их последующего внедрения в клиническую практику. Они также являются тем этапом исследований, на котором экспериментальные медицинские технологии впервые применяются к людям. При этом исследователи зачастую не публикуют отрицательные или сомнительные результаты испытаний или не включают в отчет полную информацию о побочных эффектах. Согласно статистике, менее половины клинических испытаний, профинансированных NIH (основным их спонсором в США), публикуются в рецензируемых журналах в течение 30 месяцев после окончания. Около трети подобных исследований не имеют публикаций и через четыре года.

Согласно новому регламенту, все клинические испытания должны быть зарегистрированы в общедоступной официальной базе данных ClinicalTrials.gov не позже 21 дня с момента включения в них первого добровольца. Окончательные результаты требуется опубликовать в течение года после завершения исследования. Эти требования относятся к испытаниям лекарств (включая биопрепараты), медицинской техники и поведенческой терапии, в том числе к их первой фазе (в ней изучают переносимость терапии на небольшом числе добровольцев, чаще всего здоровых).

Помимо сроков регистрации и публикации регламент требует обнародовать полную информацию об этнической принадлежности участников и всех зарегистрированных побочных эффектах. На NIH возлагается задача не допускать проведения клинических испытаний, которые имеют сомнительный дизайн, дублируют предыдущие исследования, слишком сложны, включают недостаточное число участников или неоправданно дороги.

Также документ содержит требование о том, чтобы все исследователи, проводящие испытания, а также сотрудники NIH, одобряющие их проведение и оценивающие результаты, предварительно проходили обучение стандартам Надлежащей клинической практики (Good Clinical Practice, GCP). Рецензию каждого раздела итоговой публикации должны проводить соответствующие эксперты (клинические исследователи, фармакологи, медицинские статистики и другие). При проведении мультицентровых испытаний их суммарные результаты теперь обязан оценивать единый совет рецензентов (в настоящее время результаты каждой клиники может оценивать свой совет, что часто приводит к конфликтующим заключениям и замедляет процесс рецензирования).

Регламент также подразумевает создание единой электронной базы данных клинических испытаний, которая призвана облегчить и унифицировать контроль их проведения и публикации результатов.

Новые требования вступают в силу 18 января 2017 года. Их нарушителям грозят крупные штрафы.

Подобные нововведения могут увеличить стоимость проведения клинических исследований, которые и так весьма затратны. Только NIH ежегодно вкладывает в них более трех миллиардов долларов, финансирование поступает и от других государственных организаций и частных компаний. При этом на рынок в итоге поступает не более 10 процентов лекарств, для которых проводились клинические испытания.

17.09.2016 Источник: nplus1.ruОлег Лищук

Частичное перепрограммирование восстанавливает молодую экспрессию генов за счет временного подавления идентичности клеток

 Авторы: Antoine Roux, Chunlian Zhang, Jonathan Paw, José Zavala-Solorio, Twaritha Vijay, Ganesh Kolumam, Cynthia Kenyon, Jacob C. Kimmel     Аннотация   Сообщалось, что временная индукция...

Читать далее

Профилирование эпигенетического возраста в отдельных клетках

 Авторы: Александр Трапп, Чаба Керепеси, Вадим Николаевич Гладышев     Аннотация   Метилирование ДНК определенного набора динуклеотидов CpG стало критическим и точным биомаркером процесса старения. Многовариантные модели машинного обучения, известные как...

Читать далее

Эпигенетические часы показывают омоложение во время эмбриогенеза, с последующим старением

      Краткое содержание   Представление о том, что клетки зародышевой линии не стареют, возникло еще  с 19-го века от идей Августа Вейсманна. Однако...

Читать далее

Мультиомиксное омоложение клеток человека путем кратковременного перепрограммирования в фазе созревания

      Краткое содержание   Старение - это постепенное снижение физической формы организма, которое со временем приводит к дисфункции тканей и заболеваниям. На клеточном...

Читать далее

Универсальный возраст по метилированию ДНК в тканях млекопитающих (препринт)

Новые результаты       Старение часто воспринимается как дегенеративный процесс, вызванный случайным накоплением клеточных повреждений с течением времени. Несмотря на это, возраст можно...

Читать далее

Ограниченное омоложение старых гемопоэтических стволовых клеток в молодой нише костного мозга

      Гемопоэтические стволовые клетки (HSC) с возрастом обнаруживают функциональные изменения, такие как снижение регенеративной способности и миелоидно-зависимая дифференцировка. Ниша HSC, которая...

Читать далее

Разведение плазмы улучшает когнитивные функции и снижает нейровоспаление у старых мышей

      Наше недавнее исследование установило, что факторы молодой крови не являются причиной и не являются необходимостью для системного омоложения тканей млекопитающих...

Читать далее

Пора кончать со старой кровью - Джош Миттельдорф

      2020 год обещает нам, что мы сможем сделать наши тела молодыми без явного восстановления молекулярных повреждений, но лишь просто изменив...

Читать далее

Омоложение тканей трех зародышевых листков путем замены плазмы старой крови солевым раствором альбумина

     Аннотация   Гетерохронный обмен крови омолаживает старые ткани, и большинство исследований о том, как это работает, фокусируется на молодой плазме, ее фракциях...

Читать далее

Обращение возраста: измерение эпигенетического возраста двух разных видов с помощью одних часов

   Аннотация   Известно, что молодая плазма крови оказывает благотворное влияние на различные органы у мышей. Однако не было известно, омолаживает ли молодая...

Читать далее

Прорыв в омоложении

  Если вы избегаете громких заявлений и в течении длительного времени соблюдаете дисциплину недосказывания посреди яркого неонового мира, то возможно вы...

Читать далее

Трансплантация ACE2-мезенхимальных стволовых клеток улучшает результат лечения у пациентов с пневмонией, вызванной COVID-19

Озвучить текст роботом: 

    Краткое содержание   Коронавирус (HCoV-19) вызвал новую вспышку коронавирусной болезни (COVID-19) в Ухане, Китай. Профилактика и реверсия...

Читать далее

Диагностика старения на основе 9 признаков «Hallmarks of Aging»

  “Если вы не можете измерить это, вы не можете улучшить его”, — так сказал Уильям Томсон, великий ирландский физик известный...

Читать далее

Паттерны биомаркеров старения, смертности и вредных мутаций проливают свет на начинающееся старение и причины ранней смертности - Гладышев 2019

Основные моменты Смертность от возрастных заболеваний U-образная с надиром ниже репродуктивного возраста Количественные биомаркеры старения постоянно меняются на протяжении всей жизни Бремя мутаций...

Читать далее

Клеточное старение. Определение пути вперед

Клеточное старение - это состояние клетки, вовлеченное в различные физиологические процессы и широкий спектр возрастных заболеваний. В последнее время быстро растет...

Читать далее

Видео: Суть старения и путь к долголетию - Гладышев В.Н.

Лекторий МГУ: Вадим Николаевич Гладышев, 28 мая 2019 г. 17.00Тема лектория: «Суть старения и путь к долголетию». Профессор Факультета биоинженерии и...

Читать далее

Японцы получили разрешение скрестить эмбрион человека и животного

Ученые давно проводят эксперименты по выведению различных гибридных видов животных. Как правило, это относится к лабораторным животным, опыты над которыми...

Читать далее

Мыши смогли восстановить ампутированные пальцы при помощи двух белков

  Возможно, в будущем люди смогут восстанавливать потерянные конечности — на это, во всяком случае, намекают медицинские эксперименты. Ученым уже известно...

Читать далее

Израильские учёные разработали универсальное лечение против рака

    Небольшая группа израильских учёных считает, что они нашли первое универсальное лечение против рака.  «Мы считаем, что через год мы предложим универсальное...

Читать далее

Клинические испытания первой омолаживающей терапии

    Самое первое человеческое испытание сенолитических лекарств, было объявлено ещё в июне, и большая часть мира практически не обратила внимания на него...

Читать далее

Старение внеклеточного матрикса

    Данная статья собрана из нескольких моих ранних заметок о влиянии внеклеточного матрикса на процесс старения. Текст статьи будет обновляться — я планирую...

Читать далее

Обзор достижений в борьбе со старением в 2018 году

   Каким был 2018 год в борьбе со старением? Год начался с хорошей новости. Под давлением общественности, ученых, организаций и сторонников борьбы со...

Читать далее

Таблетка от старости и кровь младенцев: достижения науки о старении в 2018 году

    2018-й принес обнадеживающие результаты в борьбе со старением и стал годом взрывного роста бизнеса на бессмертии. Начались испытания сенолитика — препарата, убивающего стареющие клетки, ключевого...

Читать далее

Китайский ученый заявил о рождении первых в мире генетически модифицированных детей

  Китайский ученый Цзянькуй Хэ заявил о рождении первых в мире детей из генетически отредактированных эмбрионов. По словам ученого, родились близняшки, у которых он попытался создать устойчивость к заражению...

Читать далее

Новая веха в медицине: Создан первый в мире сканер для всего тела

    Исследователи и ученые из Калифорнийского университета в Дейвисе со своими китайскими коллегами из компании United Imaging Healthcare (UIH) создали аппарат...

Читать далее

Первая искусственная роговица, напечатанная на 3D-принтере, уже готова для трансплантации

    Роговица — это крайне важная, но очень хрупкая часть нашего органа зрения. Она очень легко подвержена травмам и различным заболеваниям...

Читать далее

Ученые создают лазерный кожный регенератор из «Стартрека»

     Технологии из научно-фантастической вселенной «Стартрек» продолжают проникать в нашу реальную жизнь. Мы уже читали о медицинском трикодере, слышали о разработках...

Читать далее

Ученые создали универсальные имплантаты, которые не будут отторгаться организмом

  Любые материалы (в том числе и биологические), которые не созданы нашим организмом, в любом случае являются чужеродными и будут отторгаться...

Читать далее

«Получи я миллиард долларов сегодня, мы победили бы старение на 10 лет раньше. Это 400 миллионов жизней»

      Обри де Грей: большое интервью   В Москву на конференцию «Future in the City», которая пройдет 18 и 19 июля в башне «Империя» в Москва-Сити...

Читать далее

Генетик из Гарварда создал стартап по омоложению собак

В дальнейшем ученый намерен распространить исследования на людей.     Генетик, молекулярный инженер и химик Джордж Черч из Гарварда основал стартап Rejuvenate Bio...

Читать далее

Как наука приближает бессмертие к реальности?

    Поиски Понсе де Леоном фонтана вечной молодости могут быть легендой, но основная идея — поиск лекарства от старости — вполне реальна. Люди...

Читать далее

Секрет вечной жизни точно скрывается в наших клетках

    Однажды могущественный шумерский король по имени Гильгамеш отправился на происки, как это часто делают персонажи мифов и легенд. Гильгамеш стал...

Читать далее

Геронтологи готовы к прорыву

Остановись, старенье!   Ведущие ученые из 17 стран приехали в Россию, чтобы решить проблему старения. Именно теперь, по их мнению, накоплен критический...

Читать далее

Моя улучшенная версия: как жить вечно

      Джордж Чёрч [George Church] возвышается над большинством людей. У него длинная серая борода волшебника Средиземья, а работа всей его жизни...

Читать далее

Клеточная терапия без клеток: омоложение внеклеточными везикулами

  Восстановление сердечной мышцы после месяца терапии внеклеточными везикулами. Иммунные метки: агглютинин (красный), тропонин (зеленый) и DAPI (голубой)   Исследователи Колумбийского университета, работающие...

Читать далее

Биологи впервые собрали мышиный «эмбрион» прямо из стволовых клеток

  Бластоциста состоит из внешнего слоя клеток, из которого развивается плацента, и внутреннего – будущего детёныша. Здесь и ниже иллюстрации Nicolas...

Читать далее

Способ борьбы со старением: обращение вспять процесса снижения концентрации НАД+

    Старение сопровождается развитием метаболических нарушений и дряхлением. Недавние исследования продемонстрировали, что снижение уровня никотинамидадениндинуклеотида (НАД+) – ключевой фактор замедления обменных процессов, связанного...

Читать далее

Лекарства от старения, и Где они обитают

Время напрямую людей не убивает, старение – это биологический процесс. Есть группа заболеваний, которые называют возраст-ассоциированными, или старческими. Основным фактором риска...

Читать далее

Создан микроскоп, позволяющий наблюдать за движением клеток внутри организма

Ученые из Медицинского института Говарда Хьюза усовершенствовали метод флюоресцентной микроскопии таким образом, что теперь с ее помощью можно снимать в...

Читать далее

Ученые имплантировали маленький человеческий мозг мыши

Имплантация органов и тканей – вещь в науке далеко не новая. Не первый день существуют и так называемые кортикальные наборы...

Читать далее

В человеческих клетках впервые обнаружена новая форма ДНК

Ученые из австралийского Института медицинских исследований Гарвана сообщили об открытии в клетках человеческого организма необычных структур ДНК – i-мотивов (intercalated-motif...

Читать далее

Нанонож лишнего не отрежет: хирурги тестируют точечную терапию рака

Самое распространенное среди мужчин онкологическое заболевание, рак простаты, которым страдает примерно четверть пациентов урологических стационаров, до недавнего времени лечили хирургически — удаляли...

Читать далее

В США впервые в мире провели комплексную пересадку пениса и мошонки

Врачам из больницы Джона Хопкинса (штат Мэриленд) удалось провести успешную комплексную трансплантацию пениса и мошонки. Операция длилась 14 часов, в...

Читать далее

Антиоксидант MitoQ омолаживает сосуды

Результаты, полученные исследователями университета Колорадо в Боулдере, работающими под руководством профессора Дага Силса (Doug Seals), еще раз подтвердили, что применение...

Читать далее

Эпидемия молодости: как прожить 120 лет и стать счастливым

    Около 5% нынешних молодых и богатых проживут 120 лет и дольше, считают биохакеры. Читайте, что для этого нужно делать. Осенью 2017...

Читать далее

Имплантация пигментного слоя сетчатки помогла сохранить зрение

    Борьба с заболеваниями, которые в той или иной степени угрожают жизни человека – одно из самых приоритетных направлений современной медицины...

Читать далее

В США протестировали мозговой имплантат для улучшения памяти

    Американские исследователи провели проверку имплантата-электростимулятора, призванного усилить память. В среднем способность к запоминанию слов удалось улучшить на 15%. Если технология пройдет...

Читать далее

Ученым впервые удалось воссоздать легочную ткань

    Лечение стволовыми клетками находит все большее применение в медицинской практике. Так, например, группа китайских ученых из Университета Тунцзи не так...

Читать далее

Ученые МИЭТа планируют начать серийное производство аппарата вспомогательного кровообращения для детей уже в этом году

    В 2012 году благодаря ученым нашего университета была осуществлена первая в России успешная операция по имплантации «искусственного сердца» человеку. К...

Читать далее

Первый шаг к тканеинженерным надпочечникам

    Исследователи лондонского университета королевы Марии, работающие под руководством доктора Леонардо Гуасти (Leonardo Guasti), использовали репрограммированные клетки для создания первого прототипа...

Читать далее
Image

Оцифровка пользователя, Моделирование, 3D-визуализация.

Создание подробной цифровой копии на основе данных из медкарты.

Анализ данных. Исправление показателей организма.

Image

Взаимодействие цифровых профилей с целью улучшения показателей.

Обмен знаниями, проведение общих исследований.

Загрузка личного аватара в 3D мир. Игрификация, соревнования.

Image

В разработке

  • Официальная страница о медицинских чат-ботах на сайте Сверхчеловечество.рф
  • Подробности разработки чат-бота для проекта "Карта управления возрастом" (для партнеров и разработчиков) здесь:
Image

Обзор мировых разработок по хранению данных в разработке

Хранилище данных для Электронной Медицинской Карты Управления Возрастом в разработке

Материалы по теме:

Image

Основное взаимодействие планируется производить посредством Социальной сети:

Также существует множество специализированных телемедицинских сервисов:

Image

Данный раздел находится в разработке и будет доступен после запуска Электронной медицинской Карты Управления Возрастом:

Image

Основной материал сайта по теме искусственного интеллекта в медицине здесь:

На основе данной статьи будет определяться разработчик искусственного интеллекта для данной системы управления возрастом.

Image

ВАШ ЛИЧНЫЙ ВКЛАД В БОРЬБУ СО СТАРЕНИЕМ

Скооперируйтесь с тысячами других участников и создайте любой проект в области антистарения, проведите научные исспедования

Площадка для создания и финансирования проектов. Официальная страница сайта Сверхчеловечество.рф для сбора средств на ускорение прогресса в области омоложения:

Image
Image

Основная страница сайта Сверхчеловечество.рф о создании и участии в клинических испытаниях терапий антистарения и отката возраста организма здесь: