В Китае налажено промышленное производство свиней-доноров

 

Свиньи для выращивания органов 

 

По словам одного из исследователей из национального проекта по ксенотрансплантации, первая такая операция по пересадке может пройти всего через два года.

Недавние эксперименты, проведенные в Китае, Японии, Южной Корее, Европе и США, показали, что животные с пересаженным свиным органом могут жить несколько лет. Например, бабуин c сердцем свиньи прожил три года в Национальных институтах здравоохранения США.

В Китае находится первый в мире промышленный завод по производству клонированных поросят. В Институте биотехнологий в Шэньчжэне ежегодно производится 500 свиней. Также в Китае есть менее крупные фермы.

Потребность в клонированных органах в Китае возросла после того, как правительство в 2015 году запретило использовать для этих целей органы казненных преступников, которые были главным источником на протяжении десятилетий. По данным китайского Минздрава, менее 10 тысяч человек пожертвовали свои органы в период с 2010 по 2016 года — этого недостаточно: ежегодно более 1,5 млн пациентов нуждаются в трансплантации.

По словам Чжао Цзыцзяна, директора Исследовательского центра по изучению метаболических заболеваний в Медицинском университете Нанкина в провинции Цзянсу, в стране существует огромный спрос на операции по пересадке из-за большого количества сердечно-сосудистых заболеваний, рака легких и гепатита, которые приводят к органной недостаточности. «Мы ожидаем, что правительство, наконец-то, прекратит молчание и разрешит клинические испытания», — рассказывает Чжао.

Органы свиньи похожи на человеческие по размеру и метаболизму, и поэтому наиболее подходят для трансплантации. В Китае в ноябре прошлого года успешно прошла пересадка печени свиньи обезьяне.

По данным китайских СМИ, с 2010 года более 100 пациентов восстановили свое зрение с помощью операции по пересадке роговицы свиньи, которая стоит около 30 тысяч юаней ($4,5 тысяч). Однако ткани глаза не содержат кровеносных сосудов, что снижает риск отторжения при пересадке. Чего не скажешь о других органах. Это, в основном, и тормозит клинические испытания.

Ученые борются с этим с помощью биотехнологий. Редактирование генома с помощью CRISPR/Cas9 позволяет изменять или удалять определенные гены у свиней, чтобы иммунная система человека не отторгала новые органы.

Некоторые ученые считают, что пройдут десятилетия, прежде чем органы свиньи будут успешно пересажены человеку. На фермах по клонированию из 100 эмбрионов, здоровыми рождаются только 1-3 поросенка. Также существует большой риск воспаления после пересадки. Наконец, опыты проводились на генетически модифицированных животных, чья иммунная система была скорректирована так, чтобы свести к минимуму отторжение. Тем не менее, для многих больных свиньи — это пока единственный шанс на выживание.

Британские врачи планируют использовать модифицированные органы свиней для лечения детей, рожденных с атрезией пищевода. Трансплантацию планируется провести 10 детям.

 

Ранее: Биологи впервые вырастили свиней с "очеловеченными" органами

 Подробнее - всё о пересадке, регенерации и выращивании органов: ОРГАНЫ И ИМПЛАНТАТЫ

 

28.08.2017 Источник: hightech.fm

Обнаружены 16 генетических маркеров долголетия

 

 Гены долголетия

 

Ответ на то, как долго каждый из нас будет жить, частично закодирован в нашем геноме. Исследователи определили 16 генетических маркеров, связанных со снижением продолжительности жизни, в том числе 14 новых для науки. Это самый большой набор маркеров продолжительности жизни, которые были обнаружены на сегодняшний день. 

Около 10 процентов населения имеет некоторые конфигурации этих маркеров, которые сокращают срок жизни по сравнению со средним населением. В исследовании, проведенном учеными из Швейцарского института биоинформатики (SIB Swiss Institute of Bioinformatics), Лозаннской университетской больницы (Lausanne University Hospital) и Университета Лозанны (University of Lausanne), представлена мощная вычислительная основа для выявления генетики нашего времени смерти и, в конечном счете, любого заболевания. Исследование опубликовано в Nature Communications.

Почему некоторые из нас живут дольше других? Окружающая среда, в которой мы живем, в том числе наш социально-экономический статус или еда, которую мы едим, играет большую роль, но от 20 до 30 процентов вариаций в человеческой жизни сводится к нашему геному. Таким образом, изменения в определенных местах нашей ДНК-последовательности, такие как полинуклеотиды с одним нуклеотидом (SNP), могут являться ключами от нашего долголетия.

«До сих пор в самых полных исследованиях было обнаружено только два варианта в геноме, которые отвечают за долголетие», — отмечает профессор Золтан Куталик (Zoltán Kutalik), руководитель группы в SIB и доцент Института социальной и профилактической медицины (Institute of Social and Preventive Medicine).

В новом исследовании группа ученых во главе с Куталиком использовала инновационный вычислительный подход для анализа набора данных из 116 279 человек и зондирования 2,3 миллиона человеческих снипов (SNP).

Было обнаружено беспрецедентное количество SNP, связанных с продолжительностью жизни (16), в том числе 14 совершенно новых для науки. «В нашем подходе мы уделяем приоритетное внимание изменениям ДНК, которые, как известно, связаны с возрастными заболеваниями, чтобы более эффективно сканировать геном, — говорит Куталик. «Это самый большой набор снипов, связанных с жизненным циклом, которые когда-либо были обнаружены».

Оказалось, что каждый десятый человек несет некоторые комбинации этих маркеров, которые сокращают его жизнь более чем на год по сравнению со средним населением. Кроме того, человек, унаследовавший версию сокращения продолжительности жизни одного из этих маркеров, может умереть на семь месяцев раньше.

Этот подход также позволил исследователям исследовать, как изменения ДНК влияют на продолжительность жизни в целом. По словам авторов, большинство обнаруженных снипов воздействуют на прогрессирование и течение сразу нескольких заболеваний, а также на уровень некоторых факторов риска, таких как, например, курение и предрасположенность к развитию шизофрении. Низкая экспрессия генов по соседству со снипами RBM6, SULT1A1 и CHRNA5, наоборот, увеличивала продолжительность жизни (носители таких генетических особенностей жили от 85 до100 лет).

Таким образом, эти три гена могут выступать в качестве биомаркеров долголетия, то есть продолжительности жизни не менее 85-100 лет. 

Это исследование, которое является частью проекта AgingX, поддерживаемого SystemsX.ch (Swiss Initiative in Systems Biology), приближает нас к пониманию механизмов старения человека и долголетия. В нем также предлагается инновационная вычислительная основа для повышения эффективности исследований генетически обусловленных  заболеваний в более общем плане. Таким образом, эта модель может иметь многообещающие применения в области персонализированной медицины.

Напомним, что ранее ученые неоднократно заявляли о том, что раскрыли тайну «гена долголетия». Так, еще в 2007 году американские ученые объявили о том, что обнаружили ген, отвечающий за увеличение продолжительности жизни при жестком ограничении потребления калорий.

В двух исследованиях, проведенных в 2008 немецкими и французскими в 2008 и 2009 годах, ученые обнаружили у группы долгожителей ген FOXO3A, который исследователи назвали «геном долголетия».

В 2009 году генетики из Нью-йоркского медицинского колледжа Альберта Эйнштейна (Albert Einstein College of Medicine) обнаружили устойчивую и, как выяснилось, вполне логичную связь между строением концов хромосом — теломер и жизнью до ста лет.

В 2012 году ученые из Бостонского университета, работающие под руководством профессоров Паолы Себастиани (Paola Sebastiani) и Томаса Перлза (Thomas Perls), опубликовали исследование, которое однозначно доказывало преимущественное влияние генов на продолжительность жизни. Однако сенсационная статья Паолы Себастиани была отозвана после многочисленных критических замечаний ее коллег-генетиков. Претензии были высказаны к использованной методологии анализа генома долгожителей и людей из контрольных групп, огрехи которой могли повлиять на результаты. И хотя речи не идёт о полном пересмотре взглядов, безупречность опубликованного исследования поставлена под сомнение.

Однако в 2014 году исследование, которое включило 17 самых долгоживущих людей планеты в возрасте от 110 до 116 лет, не подтвердило ни одно их предыдущих «открытий», в которых были найдены особые комбинации генов у людей с выдающейся продолжительностью жизни. Ни у одного из 17 участников исследования не было обнаружено ни одной открытой ранее комбинации «генов долгожителей». Никто из них не отличался приверженностью к здоровому образу жизни или к здоровому питанию. Напротив, около половины испытуемых были курильщиками, а у одной из долгожительниц была обнаружена вариация гена, связанная с повышенной склонностью к нарушению сердечного ритма (однако мутация в жизни так и не проявилась). При этом многие из них оставались в старости физически и когнитивно активными: например, один из них оставался практикующим врачом до 103 лет, а другой водил машину до 107 лет.

Изначально ученые предположили, что люди, живущие больше 110 лет, могут иметь редкие мутации, однако результаты не выявили у них каких-либо генетических отличий от генома других людей.

К сожалению, генетика долголетия по-прежнему остается наукой без достоверных доказательств. Однако попытки объяснить продолжительность жизни при помощи генов предпринимаются учеными из разных стран с завидным постоянством. Вероятно, рано или поздно одна из таких попыток увенчается успехом и загадка «гена долголетия» все же будет раскрыта.

 

28.07.2017 Источник: medportal.ru

Человек, получивший обновление иммунной системы для борьбы с раком

 

Перезагрузка иммунитета

 

Уильям Людвиг [William Ludwig] в 2010-м был 64-летним тюремным надзирателем на пенсии, и жил в Бриджтоне, Нью-Джерси, когда он получил почти безнадёжный прогноз в связи с раком. У Ракового центра имени Абрамсона в Пенсильванском университете закончились варианты химиотерапии, и Людвига исключили практически из всех клинических испытаний, поскольку у него было сразу три вида рака – лейкемия, лимфома и сквамозноклеточная карцинома (рак кожи). В данном позднее интервью учёные Карл Джун описал состояние Людвига как «практически мёртвый».

Элисон Лорен [Alison Loren], онколог из Пенсильвании, заботилась о Людвиге пять мучительных лет. Если химиотерапия сразу неэффективна, то каждый новый цикл даёт всё меньше результатов, и, по её словам, она становится всё более токсичной. В случае Людвига токсичные побочные эффекты сводили на нет любой прогресс в борьбе с раковыми клетками.

Химиотерапия подавляла иммунную систему Людвига, поскольку B-лимфоциты, клетки иммунной системы, были именно теми клетками, на которые была нацелена химиотерапия. Они были поражены раком, бесконтрольно распространявшимся в костном мозге. В его правом глазу разыгралась инфекция от старого вируса ветрянки. Рак стал мобильным, или, как говорят врачи, «подвижным», добираясь до самых дальних мест в его теле. Лорен считала, что рак кожи Людвига выглядел так, будто распространился через метастазы от его костей.

Примерно в то время Лорен и предложила Людвигу новый трюк, появившийся в наборе у докторов института. Стратегия была местной, радикальной и очень опасной. «Уильям – прекрасный, скромный человек, – говорит Лорен. – Не думаю, что он понимал, насколько это было в то время революционно. Он относился к этому как к самому собой разумеющемуся. Он посмотрел на меня и пожал плечами: 'Я попробую' ». Если кратко, учёные университета хотели использовать инженерные трюки для воссоздания возможности точного прицела, присутствующей у антител – Y-образных белков, коих вариантов есть миллионы – чтобы нацеливаться на маркер рака Людвига. Антитела обычно привязываются к молекулярным маркерам-антигенам, отмечая, что от них необходимо избавляться при помощи очищающих клеток. В-клетки и другие клетки с антигенами способны нацеливаться на антиген. Затем другие клетки иммунной системы, Т-хелперы, замечают итоговую структуру, привязываются к ней и выдают яростный поток сигнальных молекул, цитокины, чтобы возбудить иммунный отклик. Т-киллеры также организуют смертельные атаки на микробов, переносящих недозволенные антигены. Т-клетки и сами способны наносить удары, но они не так эффективны без точной наводки антител.

Зелиг Эшхар [Zelig Eshhar], иммунолог из Вайцмановскго института в Израиле, придумал, как комбинировать эти подходы. К 1989 году он изобрёл «химерный рецептор антигенов Т-клеток», CAR-T, описав их, как «Т-тела». Они были созданы из смешанных вирусов, переносящих новый человеческий ген. Вирусы тайно проникали в клетки человека, перенося этот ген. На месте ген создавал на Т-клетках новый рецептор, имитировавший функцию наведения антител, помогая им нацеливаться на раковые клетки. Джун, Брюс Левин и их коллеги позже улучшили Т-клетки CAR, помогая выращивать их в реальных биологических системах.

Учёные могли закодировать в Т-клетках Людвига самонаводящееся устройство, и использовать небольшое их количество в качестве своеобразных наёмников, сражающихся на стороне национальной гвардии его иммунной системы. Этот ген разработали на компьютере а затем спутали вместе с обезвреженным ВИЧ, добавив генетический код, полученный от мышей, коров и сурков. Если «химера» обозначает новый вид, гибрид, не существовавший в природе, то в этом случае это была химерная молекула ДНК. Джун отметила, что эта мешанина кода напоминала творения Руба Голдберга, и была «настоящим зоопарком».

Лорен подробно описала Людвигу процедуру. Из его вены возьмут кровь, прогонят через машину, которая отделит несколько его Т-клеток. Эти клетки отредактируют, отправив к ним вирус, который проберётся в их ядра и установит там синтетический ген на случайном месте его генома. Этот разработанный ген закодирует белок на строительство рецептора, позволяющего Т-клеткам распознавать определённый маркер поверхности клеток, называемый CD19, у раковых В-клеток Людвига, что даст им точную систему наведения. При успешном стечении обстоятельств, после того, как отредактированные клетки вернутся в кровеносную систему, они займутся атакой. И с помощью этих клеток иммунная система Людвига может стать мобильной, отзывчивой и достаточно сильной, чтобы победить рак. Был шанс, что она проявит лихорадочную активность, или что отредактированные Т-клетки окажутся не такими мощными, как от них ожидали. Команда медиков просто не могла быть уверена в результате. Этого никто никогда не пробовал. Так что в тот момент Уильям Людвиг стал известен, как пациент номер один.

Его положили в госпиталь 31 июля 2010. Несколько дней после того, как отредактированные клетки вернулись в его кровеносную систему, ничего интересного не происходило. Ему ввели ещё одну партию. Но затем, через десять дней, до третьего, последнего укола, разразился хаос. Тело Людвига начало трястись. Его пульс взлетел, давление упало. Его начало лихорадить.

«Меня положили в реанимацию. Я не должен был выжить», – вспоминает Людвиг. Тогда ещё медсёстры этого не знали, но его Т-клетки начали убивать рак. «Цитокиновый шторм, – сказала мне Лорен. – Отредактированные Т-клетки „делали прививки“ в его теле, встречались с целевыми антигенами, и атаковали потоками цитокинов». Эти сигнальные молекулы срабатывали в иммунной системе, вызывая жар и открывая капилляры для того, чтобы иммунные клетки могли устремиться по сосудам и достичь целей. Лорен объясняет: «Теперь, после наблюдений множества пациентов, мы знаем, что сильный иммунный отклик означает, что терапия сработала». Шторм Людвига длился часами, но при этом он был гораздо слабее того, что большинство из нас чувствуют при сильном гриппе. Так же быстро, как начался, шторм прекратился. Почти через месяц врачи пришли в палату Людвига во вторник, взять пробу костного мозга на проверку. «Это не очень приятно, и я не тот человек, кого можно легко попросить взять пробу костного мозга», – сказал мне Людвиг. Нехотя он согласился. «Билл их не любит», – говорит Лорен. Она проткнула его бедренную кость иглой и взяла пробу костного мозга 1-2 см длиной, которая покажет состав клеток, циркулирующих в теле. Биопсия здорового костного мозга показывает баланс между красными кровяными тельцами, тромбоцитами, иммунными клетками и смесью кроветворных клеток. В поражённом раком мозге преобладает один тип клеток, лимфоциты.

Лорен посмотрела в микроскоп. «Это казалось невероятным», – говорит она. Никаких раковых клеток в костном мозге не было. Она видела полосатые слои клеток через тот же самый микроскоп ещё месяц назад. Через два дня у Людвига взяли ещё одну пробу. Никаких полосок. «Я не могла в это поверить. Такого в медицине не бывает», – сказала мне Лорен. Она заглянула в комнату к Людвигу на следующей неделе. «Вы не поверите – персонал перепутал пробы, и мне пришлось повторять тест на костный мозг, – ворча, пожаловался ей Людвиг. – Нет, не так – ответила Лорен. – Первая проба была плохой, она была загрязнена кровью. Мы не думали, что первый тест был правильным, – сказала она. – Честно, мы не знаем, что сказать. Уильям, в твоём теле больше нет рака».

Шли месяцы. «Мы всё ждали подвоха», – сказала она мне. Через год после лечения Людвиг спросил у неё: «Элисон, а почему ты не говоришь мне, что я вылечился?» Лорен объяснила ему, что определения лечения основаны на десятилетиях исследований, сотнях пациентов, горах данных. «Уильям, – сказала она ему, – ты единственный».

Небольшой отряд клеток-наёмников победил рак. Но эта популяция клеток может и не выжить. Я спросил Людвига, что случится, когда небольшой набор клеток, синтетических охранников, умрёт, и на защите тела останутся только силы национальной гвардии. Будет ли это достаточно сильная система защиты? Или рак может вернуться? «Это был первый вопрос, который все задавали – сказал он. – Никто не знает».

Джун считает, что его искусственно созданные Т-клетки устранили килограмм раковых клеток Людвига меньше, чем за месяц. «Лекарства на такое не способны», – рассказала Джун репортёру. Вскоре появился пациент номер два, затем пациент номер три. Доктора наблюдали уничтожение от 2 до 4 килограмм рака в течение нескольких дней у трёх различных пациентов. В течение нескольких лет сотни пациентов наблюдали за очищением своих тел от рака. Группа Джун из Пенсильванского университета и её коллеги из Детского госпиталя в Филадельфии сообщали о невероятных успехах в использовании CAR-T для лечения острого лимфобластного лейкоза, детского рака. Эмили Уайтхед, 7 лет, из Филадельфии, и Эвери Уолкер, 10 лет, из Редмонда, штат Орегон, появились на страницах центральных газет. «Хорошие новости для юного пациента с раком: полная ремиссия!» – провозглашала газета The Philadelphia Inquirer. «Последняя надежда девочки, отредактированные клетки иммунной системы, победили лейкемию» – объявила The New York Times.

Но не у всех пациентов отклик был положительным. Никто не знал, почему генная терапия вызывает у некоторых пациентов такие сильные конвульсии и треморы, как у Людвига, а у других – небольшую лихорадку. Уайтхед проходила такую же процедуру при лечении детской лейкемии, и её тело отреагировало так сильно, что она чуть не умерла. Но несколько дней спустя лихорадка ушла, как и рак. Уолкер тоже подвергался лечению. «Мы все ждали большого шторма», – рассказал её отец Аарон Уолкер The Philadelphia Inquirer. Но у неё возникла только небольшая лихорадка. К несчастью, у Уолкер и Мэдисон Горман позднее случился рецидив, и они умерли.

Перед учёными, редактирующими Т-клетки для борьбы с раком, стоит множество технических преград. Т-клетки CAR подстраивали так, чтобы их рецепторы были больше похожи на маркеры, чаще встречающиеся у раковых клеток, чтобы предпочтительно нацеливаться на эти клетки. В одном из исследований учёные из Пенсильванского университета показали, что смогли разработать Т-клетки, очень близкие к целям, хорошо выраженным у таких раковых клеток, как рак груди. Но многие из этих генов оказываются в небольших количествах в таких деликатных тканях, как сердце или тимус. В 2013 году Джун с коллегами сообщили о важной проблеме: Т-клетки созданные через TCR, привязывающиеся к антигенам рака, скрытым внутри раковой клетки, разработанные для соединения с MAGE-A3 в раковых клетках, стали соединяться и с продуктами гена TTN, создающиего титин, самый большой из белков человека. У некоторых пациентов это вызвало проблемы с сердцем.

С тех пор исследователи вернулись обратно к чертёжной доске, чтобы работать над подстройками и изменениями Т-клеток, формирующих более слабые связи с целевыми клетками. Работа, опубликованная в журнале Journal of Clinical Oncology, полагает, что у врачей есть возможность использовать биомаркеры для предсказания того, у каких пациентов может появиться враждебная реакция на введение CAR Т-клеток. Но происшествия с отредактированными Т-клетками до сих пор случаются. В марте Джун остановила клинические испытания Т-клеток, разработанных для соединения с CD19 на поверхности раковых клеток белых телец, после того, как 5 из 38 пациентов умерли на испытаниях из-за загадочной воспалительной реакции в мозге. В мае компания Kite Pharma, занимающаяся борьбой с раком, сообщила о похожей смерти.

Тем не менее, Novartis, международный швейцарский биотехнический гигант, находится на пороге коммерциализации лечения. В июле 2017 Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) рекомендовало одобрить первые Т-клетки CAR для детской лейкемии, которые будут продаваться по цене в $300 000. Эмили Уайтхед была первым ребёнком, которого лечили такими клетками в 2012, и сейчас у неё нет рака уже пять лет. Её лечили всего через несколько месяцев после пациента номер один, Уильяма Людвига.

Я звонил ему в 2013 году, через три года после лечения. Он только что вернулся из автопутешествия в Нью-Йорк с его женой и двумя внуками, и собирался отправится в горы Адирондак. Я предположил, что у него всё в порядке – но так ли это было на самом деле? «Я, конечно, уже не юнец, – сказал он, – но мне кажется, что для своего возраста держусь нормально». У него был атипичный рост кожи, хронический кашель, инфекция носовых пазух, жидкость в лёгких, вирус в правом глазу и сильная изжога. Но рака не было.

«Иногда меня прямо переполняют мысли о том, что я пациент номер один, – сказал Людвиг. – Я знал, что мои дни были сочтены. Мне нечего было терять». Его жена была рядом с ним более десяти лет, пока он боролся с недугом – «удивительный человек», по его словам. Менее чем через неделю после разговора Людвиг с женой поехали на своих автодомах в Куперстаун с другой парой, чтобы посмотреть, как дети играют в бейсбол. Наступало зелёное лето, окна были открыты, пары в футболках с короткими рукавами катили по старым шоссе штата Нью-Йорк, чистым и залитым светом звёзд.

Джим Козубек — специалист по обработке данных, живёт в Кембридже, Массачусетс. Автор книги "Современный Прометей: редактируя геном человека с технологией Crispr-Cas9".

 

18.08.2017 Источник: geektimes.ru

Симбиоз мозг — компьютер: первые попытки срастить нейрон с микросхемой

 

мозг - компьютер

 

Ученые из Национального исследовательского Нижегородского государственного университета имени Н. И. Лобачевского (участник "Проекта 5-100") работают над созданием адаптивного нейроинтерфейса, состоящего из сопрягающихся нейрональных сетей мозга и электронных нейроморфных систем на основе мемристоров.

Эта работа является одной из первых попыток совместить живую биологическую культуру с биоподобной нейронной сетью на основе мемристоров.

В 1971 году в статье профессора Калифорнийского университета Леона Чуа (Leon Chua) был впервые упомянут мемристор. Чуа теоретически предсказал наличие еще одного элемента электрических цепей наряду с сопротивлением, индуктивностью и емкостью, назвав его "мемристор".

 

меристорМемристивный чип в корпусе, размещенный в стандартном контактирующем устройстве (для тестирования параметров мемристивных наноструктур)

 

Об этом определении до сих пор спорят, как спорят и насчет фундаментального вопроса: что такое мемристор? Изначально он был придуман как новый элемент электрических цепей, но сейчас многие считают, что мемристор несет в себе определенное расширение функциональных возможностей резистора: мемристор — "резистор с памятью".

В отличие от обычного резистора (сопротивления), который определяет линейную зависимость тока от напряжения, мемристор — нелинейный элемент, сопротивление которого зависит от "предыстории", — например, от того, какой ток через него протекал. Он как бы "запоминает", что через него пропускали, и его состояние меняется в зависимости от этого. Такое адаптивное поведение мемристора очень схоже с тем, что мы можем встретить в природе, — в частности, в нервной системе, где эту роль играет синапс. Соответственно, биоподобные мемристорные системы — это системы, для которых базовым элементом является мемристор.

Что касается устройств таких систем, здесь могут существовать разные подходы, и ученые ННГУ предлагают свой вариант.

 

схема мемристоровСхема совмещения живых нейронов с нейронной сетью на основе мемристоров (ННГУ)

 

На базе НИФТИ ННГУ и Нижегородского нейронаучного центра разрабатывается адаптивный нейроинтерфейс, в котором, с одной стороны, присутствует живая культура, а с другой — нейронная сеть на основе мемристоров. Мемристорные нейронные сети будут сопряжены с многоэлектродной системой регистрации и стимуляции биоэлектрической активности культуры нейронов, выполняющей функцию анализа и классификации сетевой динамики живых клеток.

 

формирование мемристорных наноструктурУченые ННГУ и оборудование для формирования мемристивных наноструктур (установка плазменного реактивного травления)

 

В данный момент ученые исследуют возможность построения обратной связи, в рамках которой выходной сигнал с мемристорной сети будет применяться для стимуляции биологической сети — то есть впервые реализуется процесс обучения живой клеточной культуры.

 

прототип нейронной сети

 

В качестве живой культуры ученые используют искусственно выращенную нейрональную культуру клеток мозга. Но, в принципе, можно также использовать и срез живой ткани.

По сравнению с мировыми конкурентами, ставящими задачу "соединения живого мира и искусственных архитектур" (например, проект RAMP), преимущество проекта ННГУ состоит в том, что квалифицированные специалисты в разных областях — физики и технологии создания мемристивных наноструктур, моделирования нейронных сетей, проектирования электронных схем, нейродинамики и нейробиологии — сосредоточены как территориально, так и организационно в рамках одного университета.

 

Алексей Михайлов

 

Поясняет заведующий Лабораторией физики и технологии тонких пленок НИФТИ ННГУ имени Н. И. Лобачевского, кандидат физико-математических наук Алексей Михайлов: "Мы пытаемся создать прототип нейронной сети на основе мемристоров, которая по своему внутреннему устройству и функциональности подобна биологической нервной системе. Благодаря локальности мемристивного эффекта (соответствующие явления происходят в наномасштабе) и использованию современных стандартных технологий микроэлектроники можно будет получить на одном чипе большое количество нейронов и синапсов. Это отдаленная перспектива, к которой мы стремимся. То есть на кристалле, на чипе можно "вырастить" человеческий мозг. Пока мы делаем вещи попроще: пытаемся создавать гибридные электронные схемы, в которых какие-то функции реализуются на базе традиционной электроники (транзисторы), а какие-то новые функции, которые трудно реализовать в железе, обеспечиваются на основе мемристоров".

 

исследование мемристоровУченые ННГУ в ходе исследования параметров адаптивного отклика мемристивных устройств

 

Цель проекта — создание компактных электронных устройств на основе мемристоров, воспроизводящих свойство синаптической пластичности и функционирующих в составе биоподобных нейронных сетей в сопряжении с живыми биологическими культурами. Применение гибридных нейросетей на основе мемристоров открывает удивительные перспективы. Во-первых, мемристор может помочь уместить мощности современных суперкомпьютеров на одном чипе. Во-вторых, можно будет создавать роботов, управляющих искусственно выращенной нейрональной культурой. В-третьих, такие "мозгоподобные" системы могут использоваться для замещения части живой нервной системы электронной в случае ее повреждения или заболевания.

 

28.08.2017 Источник: ria.ru

Консервированные стволовые клетки остановят старение

 

Стволовые клетки

 

Forever Labs, стартап из бизнес-инкубатора Y Combinator, консервирует стволовые клетки взрослых людей, чтобы помочь им продлить жизнь и молодость, пишет TechCrunch.

Стволовые клетки могут стать клетками любого типа, которые необходимы в данный момент организму. А потому полезно иметь под рукой их запас на случай, если понадобится медицинское вмешательство, такое как пересадка костного мозга. Банки стволовых клеток — не новинка. Зачастую родители решают сохранить стволовые клетки своих детей. Но это применимо к новорожденным, а не к взрослым, то есть к молодым стволовым клеткам. Forever Labs собирает и хранит именно взрослые стволовые клетки.

Услуга стоит $2500, плюс еще $250 ежегодно за хранение (или фиксированный взнос в размере $7 тысяч на всю жизнь). Стартап получил разрешение Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) и предлагает свои услуги в семи штатах. Хотя на использование этих клеток для омолаживающей терапии FDA разрешение пока не выдало.

В настоящее время проводятся сотни клинических исследований, посвященных использованию стволовых клеток, и они могут занять еще несколько лет. Однако, Forever Labs уверяет, что консервирование стволовых клеток уже сейчас — это инвестиции в свою молодость и возможность повернуть вспять биологические часы. Исследования завершаться, FDA одобрит генную терапию, а у вас уже будет запас генетического материала для проведения омолаживающих процедур.

Ученые полагают, что старение — инженерная проблема, которую можно устранять. Прогнозируется даже, что эра «пост-старения» наступит в ближайшие 20 лет. Исследователи с увлечением занимаются созданием «терапии старения».

19.08.2017 Источник: hightech.fm

Частичное перепрограммирование восстанавливает молодую экспрессию генов за счет временного подавления идентичности клеток

 Авторы: Antoine Roux, Chunlian Zhang, Jonathan Paw, José Zavala-Solorio, Twaritha Vijay, Ganesh Kolumam, Cynthia Kenyon, Jacob C. Kimmel     Аннотация   Сообщалось, что временная индукция...

Читать далее

Профилирование эпигенетического возраста в отдельных клетках

 Авторы: Александр Трапп, Чаба Керепеси, Вадим Николаевич Гладышев     Аннотация   Метилирование ДНК определенного набора динуклеотидов CpG стало критическим и точным биомаркером процесса старения. Многовариантные модели машинного обучения, известные как...

Читать далее

Эпигенетические часы показывают омоложение во время эмбриогенеза, с последующим старением

      Краткое содержание   Представление о том, что клетки зародышевой линии не стареют, возникло еще  с 19-го века от идей Августа Вейсманна. Однако...

Читать далее

Мультиомиксное омоложение клеток человека путем кратковременного перепрограммирования в фазе созревания

      Краткое содержание   Старение - это постепенное снижение физической формы организма, которое со временем приводит к дисфункции тканей и заболеваниям. На клеточном...

Читать далее

Универсальный возраст по метилированию ДНК в тканях млекопитающих (препринт)

Новые результаты       Старение часто воспринимается как дегенеративный процесс, вызванный случайным накоплением клеточных повреждений с течением времени. Несмотря на это, возраст можно...

Читать далее

Ограниченное омоложение старых гемопоэтических стволовых клеток в молодой нише костного мозга

      Гемопоэтические стволовые клетки (HSC) с возрастом обнаруживают функциональные изменения, такие как снижение регенеративной способности и миелоидно-зависимая дифференцировка. Ниша HSC, которая...

Читать далее

Разведение плазмы улучшает когнитивные функции и снижает нейровоспаление у старых мышей

      Наше недавнее исследование установило, что факторы молодой крови не являются причиной и не являются необходимостью для системного омоложения тканей млекопитающих...

Читать далее

Пора кончать со старой кровью - Джош Миттельдорф

      2020 год обещает нам, что мы сможем сделать наши тела молодыми без явного восстановления молекулярных повреждений, но лишь просто изменив...

Читать далее

Омоложение тканей трех зародышевых листков путем замены плазмы старой крови солевым раствором альбумина

     Аннотация   Гетерохронный обмен крови омолаживает старые ткани, и большинство исследований о том, как это работает, фокусируется на молодой плазме, ее фракциях...

Читать далее

Обращение возраста: измерение эпигенетического возраста двух разных видов с помощью одних часов

   Аннотация   Известно, что молодая плазма крови оказывает благотворное влияние на различные органы у мышей. Однако не было известно, омолаживает ли молодая...

Читать далее

Прорыв в омоложении

  Если вы избегаете громких заявлений и в течении длительного времени соблюдаете дисциплину недосказывания посреди яркого неонового мира, то возможно вы...

Читать далее

Трансплантация ACE2-мезенхимальных стволовых клеток улучшает результат лечения у пациентов с пневмонией, вызванной COVID-19

Озвучить текст роботом: 

    Краткое содержание   Коронавирус (HCoV-19) вызвал новую вспышку коронавирусной болезни (COVID-19) в Ухане, Китай. Профилактика и реверсия...

Читать далее

Диагностика старения на основе 9 признаков «Hallmarks of Aging»

  “Если вы не можете измерить это, вы не можете улучшить его”, — так сказал Уильям Томсон, великий ирландский физик известный...

Читать далее

Паттерны биомаркеров старения, смертности и вредных мутаций проливают свет на начинающееся старение и причины ранней смертности - Гладышев 2019

Основные моменты Смертность от возрастных заболеваний U-образная с надиром ниже репродуктивного возраста Количественные биомаркеры старения постоянно меняются на протяжении всей жизни Бремя мутаций...

Читать далее

Клеточное старение. Определение пути вперед

Клеточное старение - это состояние клетки, вовлеченное в различные физиологические процессы и широкий спектр возрастных заболеваний. В последнее время быстро растет...

Читать далее

Видео: Суть старения и путь к долголетию - Гладышев В.Н.

Лекторий МГУ: Вадим Николаевич Гладышев, 28 мая 2019 г. 17.00Тема лектория: «Суть старения и путь к долголетию». Профессор Факультета биоинженерии и...

Читать далее

Японцы получили разрешение скрестить эмбрион человека и животного

Ученые давно проводят эксперименты по выведению различных гибридных видов животных. Как правило, это относится к лабораторным животным, опыты над которыми...

Читать далее

Мыши смогли восстановить ампутированные пальцы при помощи двух белков

  Возможно, в будущем люди смогут восстанавливать потерянные конечности — на это, во всяком случае, намекают медицинские эксперименты. Ученым уже известно...

Читать далее

Израильские учёные разработали универсальное лечение против рака

    Небольшая группа израильских учёных считает, что они нашли первое универсальное лечение против рака.  «Мы считаем, что через год мы предложим универсальное...

Читать далее

Клинические испытания первой омолаживающей терапии

    Самое первое человеческое испытание сенолитических лекарств, было объявлено ещё в июне, и большая часть мира практически не обратила внимания на него...

Читать далее

Старение внеклеточного матрикса

    Данная статья собрана из нескольких моих ранних заметок о влиянии внеклеточного матрикса на процесс старения. Текст статьи будет обновляться — я планирую...

Читать далее

Обзор достижений в борьбе со старением в 2018 году

   Каким был 2018 год в борьбе со старением? Год начался с хорошей новости. Под давлением общественности, ученых, организаций и сторонников борьбы со...

Читать далее

Таблетка от старости и кровь младенцев: достижения науки о старении в 2018 году

    2018-й принес обнадеживающие результаты в борьбе со старением и стал годом взрывного роста бизнеса на бессмертии. Начались испытания сенолитика — препарата, убивающего стареющие клетки, ключевого...

Читать далее

Китайский ученый заявил о рождении первых в мире генетически модифицированных детей

  Китайский ученый Цзянькуй Хэ заявил о рождении первых в мире детей из генетически отредактированных эмбрионов. По словам ученого, родились близняшки, у которых он попытался создать устойчивость к заражению...

Читать далее

Новая веха в медицине: Создан первый в мире сканер для всего тела

    Исследователи и ученые из Калифорнийского университета в Дейвисе со своими китайскими коллегами из компании United Imaging Healthcare (UIH) создали аппарат...

Читать далее

Первая искусственная роговица, напечатанная на 3D-принтере, уже готова для трансплантации

    Роговица — это крайне важная, но очень хрупкая часть нашего органа зрения. Она очень легко подвержена травмам и различным заболеваниям...

Читать далее

Ученые создают лазерный кожный регенератор из «Стартрека»

     Технологии из научно-фантастической вселенной «Стартрек» продолжают проникать в нашу реальную жизнь. Мы уже читали о медицинском трикодере, слышали о разработках...

Читать далее

Ученые создали универсальные имплантаты, которые не будут отторгаться организмом

  Любые материалы (в том числе и биологические), которые не созданы нашим организмом, в любом случае являются чужеродными и будут отторгаться...

Читать далее

«Получи я миллиард долларов сегодня, мы победили бы старение на 10 лет раньше. Это 400 миллионов жизней»

      Обри де Грей: большое интервью   В Москву на конференцию «Future in the City», которая пройдет 18 и 19 июля в башне «Империя» в Москва-Сити...

Читать далее

Генетик из Гарварда создал стартап по омоложению собак

В дальнейшем ученый намерен распространить исследования на людей.     Генетик, молекулярный инженер и химик Джордж Черч из Гарварда основал стартап Rejuvenate Bio...

Читать далее

Как наука приближает бессмертие к реальности?

    Поиски Понсе де Леоном фонтана вечной молодости могут быть легендой, но основная идея — поиск лекарства от старости — вполне реальна. Люди...

Читать далее

Секрет вечной жизни точно скрывается в наших клетках

    Однажды могущественный шумерский король по имени Гильгамеш отправился на происки, как это часто делают персонажи мифов и легенд. Гильгамеш стал...

Читать далее

Геронтологи готовы к прорыву

Остановись, старенье!   Ведущие ученые из 17 стран приехали в Россию, чтобы решить проблему старения. Именно теперь, по их мнению, накоплен критический...

Читать далее

Моя улучшенная версия: как жить вечно

      Джордж Чёрч [George Church] возвышается над большинством людей. У него длинная серая борода волшебника Средиземья, а работа всей его жизни...

Читать далее

Клеточная терапия без клеток: омоложение внеклеточными везикулами

  Восстановление сердечной мышцы после месяца терапии внеклеточными везикулами. Иммунные метки: агглютинин (красный), тропонин (зеленый) и DAPI (голубой)   Исследователи Колумбийского университета, работающие...

Читать далее

Биологи впервые собрали мышиный «эмбрион» прямо из стволовых клеток

  Бластоциста состоит из внешнего слоя клеток, из которого развивается плацента, и внутреннего – будущего детёныша. Здесь и ниже иллюстрации Nicolas...

Читать далее

Способ борьбы со старением: обращение вспять процесса снижения концентрации НАД+

    Старение сопровождается развитием метаболических нарушений и дряхлением. Недавние исследования продемонстрировали, что снижение уровня никотинамидадениндинуклеотида (НАД+) – ключевой фактор замедления обменных процессов, связанного...

Читать далее

Лекарства от старения, и Где они обитают

Время напрямую людей не убивает, старение – это биологический процесс. Есть группа заболеваний, которые называют возраст-ассоциированными, или старческими. Основным фактором риска...

Читать далее

Создан микроскоп, позволяющий наблюдать за движением клеток внутри организма

Ученые из Медицинского института Говарда Хьюза усовершенствовали метод флюоресцентной микроскопии таким образом, что теперь с ее помощью можно снимать в...

Читать далее

Ученые имплантировали маленький человеческий мозг мыши

Имплантация органов и тканей – вещь в науке далеко не новая. Не первый день существуют и так называемые кортикальные наборы...

Читать далее

В человеческих клетках впервые обнаружена новая форма ДНК

Ученые из австралийского Института медицинских исследований Гарвана сообщили об открытии в клетках человеческого организма необычных структур ДНК – i-мотивов (intercalated-motif...

Читать далее

Нанонож лишнего не отрежет: хирурги тестируют точечную терапию рака

Самое распространенное среди мужчин онкологическое заболевание, рак простаты, которым страдает примерно четверть пациентов урологических стационаров, до недавнего времени лечили хирургически — удаляли...

Читать далее

В США впервые в мире провели комплексную пересадку пениса и мошонки

Врачам из больницы Джона Хопкинса (штат Мэриленд) удалось провести успешную комплексную трансплантацию пениса и мошонки. Операция длилась 14 часов, в...

Читать далее

Антиоксидант MitoQ омолаживает сосуды

Результаты, полученные исследователями университета Колорадо в Боулдере, работающими под руководством профессора Дага Силса (Doug Seals), еще раз подтвердили, что применение...

Читать далее

Эпидемия молодости: как прожить 120 лет и стать счастливым

    Около 5% нынешних молодых и богатых проживут 120 лет и дольше, считают биохакеры. Читайте, что для этого нужно делать. Осенью 2017...

Читать далее

Имплантация пигментного слоя сетчатки помогла сохранить зрение

    Борьба с заболеваниями, которые в той или иной степени угрожают жизни человека – одно из самых приоритетных направлений современной медицины...

Читать далее

В США протестировали мозговой имплантат для улучшения памяти

    Американские исследователи провели проверку имплантата-электростимулятора, призванного усилить память. В среднем способность к запоминанию слов удалось улучшить на 15%. Если технология пройдет...

Читать далее

Ученым впервые удалось воссоздать легочную ткань

    Лечение стволовыми клетками находит все большее применение в медицинской практике. Так, например, группа китайских ученых из Университета Тунцзи не так...

Читать далее

Ученые МИЭТа планируют начать серийное производство аппарата вспомогательного кровообращения для детей уже в этом году

    В 2012 году благодаря ученым нашего университета была осуществлена первая в России успешная операция по имплантации «искусственного сердца» человеку. К...

Читать далее

Первый шаг к тканеинженерным надпочечникам

    Исследователи лондонского университета королевы Марии, работающие под руководством доктора Леонардо Гуасти (Leonardo Guasti), использовали репрограммированные клетки для создания первого прототипа...

Читать далее
Image

Оцифровка пользователя, Моделирование, 3D-визуализация.

Создание подробной цифровой копии на основе данных из медкарты.

Анализ данных. Исправление показателей организма.

Image

Взаимодействие цифровых профилей с целью улучшения показателей.

Обмен знаниями, проведение общих исследований.

Загрузка личного аватара в 3D мир. Игрификация, соревнования.

Image

В разработке

  • Официальная страница о медицинских чат-ботах на сайте Сверхчеловечество.рф
  • Подробности разработки чат-бота для проекта "Карта управления возрастом" (для партнеров и разработчиков) здесь:
Image

Обзор мировых разработок по хранению данных в разработке

Хранилище данных для Электронной Медицинской Карты Управления Возрастом в разработке

Материалы по теме:

Image

Основное взаимодействие планируется производить посредством Социальной сети:

Также существует множество специализированных телемедицинских сервисов:

Image

Данный раздел находится в разработке и будет доступен после запуска Электронной медицинской Карты Управления Возрастом:

Image

Основной материал сайта по теме искусственного интеллекта в медицине здесь:

На основе данной статьи будет определяться разработчик искусственного интеллекта для данной системы управления возрастом.

Image

ВАШ ЛИЧНЫЙ ВКЛАД В БОРЬБУ СО СТАРЕНИЕМ

Скооперируйтесь с тысячами других участников и создайте любой проект в области антистарения, проведите научные исспедования

Площадка для создания и финансирования проектов. Официальная страница сайта Сверхчеловечество.рф для сбора средств на ускорение прогресса в области омоложения:

Image
Image

Основная страница сайта Сверхчеловечество.рф о создании и участии в клинических испытаниях терапий антистарения и отката возраста организма здесь: